
30DaysCoding.com

Complete Data structures and Algorithms
Roadmap

Resources, Notes, Questions, Solutions

In this document, we’ve covered all the amazing data structures and algorithms that you need

to study for interviews. Reviewing these topics will make you a be�er problem solver, a be�er

developer, and help you ace your next technical coding interviews. If you have any questions

along the way, feel free to reach out by emailing 30dayscoding@gmail.com.

Our Aim

- Our aim is to help you become a be�er problem solver by gaining knowledge of

di�erent data structures, algorithms, and pa�erns.

- We want you to �rst understand the concepts and visualize what’s going on, then you

can move forward with more questions.

- Most phone interviews require you to be a good communicator and explain your

approach, even before you write the solution. It’s impo�ant to understand the core

concepts and then work on extra stu�.

⭐ ⭐ ⭐ There are thousands of questions out there that you can solve, but computer

science and coding is much more than just learning data structures. Building and developing

something is the core of computer science. So, if you’re actually interested in computer

science, then most of your time should go in learning new frameworks and building stu�.

Another impo�ant aspect of coding is to explore! The more you explore -> the closer you get

to your interests. Good luck!

Practice

- Practicing 150-200 questions will give you the con�dence to approach new problems.

Solving only 2 questions for 75 days is not a lot if you think about it!

30DaysCoding.com

- Consistency is the key. Finish this guide in 75-90 days. Don’t rush it from today. Take

your time, revisit topics a�er a while, read and watch a lot of videos, explore things out

there to eventually become a be�er version of yourself.

- Enjoy the process and sta� today. I’m sure you’ll do great. Have fun.

Arrays

Introduction

⭐ Informally, an array is a list of things. It doesn’t ma�er what the things are; they can be

numbers, words, apple trees, or other arrays. Each thing in an array is called an item or an

element. Usually, arrays are enclosed in brackets with each item separated by commas, like

this: [1, 2, 3]. The elements of [1, 2, 3] are 1, 2, and 3.

- Introduction to Arrays

- h�ps://www.cs.cmu.edu/~15122/handouts/03-arrays.pdf

- An Overview of Arrays and Memory (Data Structures & Algorithms #2)

- What is an Array? - Processing Tutorial

Let’s discuss some of the most common pa�erns that concern arrays. 2D matrices are also

arrays and are very commonly asked about in interviews. A lot of graph, DP, and search based

questions involve the use of a 2D matrix. We’ve discussed pa�erns such as these in each

section below. It’s impo�ant to understand the core concepts so make sure to check it out.

Hash maps, tables

⭐ A hash table is a data structure that implements an associative array abstract data type, a

structure that can map keys to values. In other words, we can store anything in the form of key

value pairs.

Example: map<string, string>, means that this is a hashmap where we store string key and

value pairs.

30DaysCoding.com

Resources

- Hashmap and Map Powe�ul Guide

- Hash Table/Hash Map Data Structure

- Data Structure and Algorithms - Hash Table

- Leetcode discuss: Hashtable implementation

Questions

- 1. Two Sum

- 771. Jewels and Stones

- Leetcode : How Many Numbers Are Smaller Than the Current Number

- Pa�ition Labels

2 pointers

⭐ For questions where we’re trying to �nd a subset, a set of elements, or something in a

so�ed array -> 2 pointers approach is useful.

30DaysCoding.com

Some common questions with this approach are concerned with spli�ing something or �nding

something in the middle, eg: middle element of the linked list. This is something you will

instantly recognize a�er solving some questions on it. So, think of the 2 pointers approach with

these types of problems and sta� solving.

Here’s a general code template for solving a 2 pointer approach problem. We move from the

le� and right with di�erent conditions until there’s something we want to �nd.

/* General two pointer problem solution */

public boolean twoSumProblem(int A[], int N, int X)

{

// represents first pointer

int left = 0;

// represents second pointer

int right = N - 1;

while (left < right) {

// question condition match

if(){

// do something

return true

}

// first wrong condition

else if(){

// close in the array from left

left+=1;

}

// second wrong condition

else{

// close in the array from right

30DaysCoding.com

right-=1;

}

}

return false;

}

Problem 1: Remove duplicates

E26. Remove Duplicates from So�ed Array

⭐ We have a given value, and we need to remove the occurrences of ‘value’ in place. The

array is so�ed and we have to return the number of elements (unique).

Damn, how do we do this? No clue.

Kidding, let’s discuss. One brute force way is to have a separate array, iterate over the original

array and then add the items other than value to the new array. Now just return the new array.

But we have to do this in place, so we can’t create an additional array. What can we do instead?

Let’s sta� from the beginning. If the number is something other than the ‘value’, let’s just bring

that to the beginning. Then, �nally, we return the pointer.

Think of this -> we want to shi� the elements behind if they don’t match the value given.

int removeElement(int A[], int elem) {

int pointer = 0;

for(int i=0; i<n; i++) {

if(A[i]!=elem) {

A[pointer++] = A[i];

}

}

return pointer;

}

Pa� II

What if we don’t have a value and just want to remove the duplicates and return the index?

30DaysCoding.com

We would still have 2 pointers, test if slow != fast -> move the slow pointer forward, and change

the nums[slow] to the fast one -> basically pushing that element back.

def removeDuplicates(self, nums: List[int]) -> int:

if len(nums) ==0 : return 0

slow = 0

for fast in range(1,len(nums)):

if nums[slow] != nums[fast]:

slow += 1

nums[slow] = nums[fast]

return slow + 1

Problem 2: Two Sum + So�ed

⭐ If we want to �nd 2 indices which sum up to a target and the array is so�ed, we can sta�

from le� and right with 2 pointers, and move them according to the sum at every time.

Eventually we will �nd the target from those 2 indices, or just return -1 if we don’t.

However, the logic would be more complex if the array is not so�ed. We can simply store the

elements in a hashmap as we go, and eventually return when we �nd target-nums[i] in the

array as we’re going forward.

boolean pairSum(int A[], int N, int X)

{

int i = 0;

int j = N - 1;

while (i < j) {

if (A[i] + A[j] == X)

return true;

else if (A[i] + A[j] < X)

i++;

else

j--;

}

return false;

30DaysCoding.com

}

Sliding window problems are also a subtype of 2 pointers, where we use them to expand or

shrink the window with a condition. In general, it’s nice to �nd pa�erns but also remember that

a problem can be solved using multiple ways! We’ve discussed more in detail below.

Read📚

- A�icle: 2 Pointer Technique

- Hands-on-Algorithmic-Problem-Solving: 2 Pointers

Videos🎥

- How to Use the Two Pointer Technique

- Two Pointer | Is Subsequence | LeetCode 392.

Questions🤔

- Middle of the Linked List

- 922. So� Array By Parity II

- Reverse String

- Valid Palindrome

- E26. Remove Duplicates from So�ed Array

- 75. So� Colors

- 11. Container With Most Water

30DaysCoding.com

Linked list

Introduction

⭐ Linked list is a data structure which stores objects in nodes in a snake-like structure. Instead

of an array (where we have a simple list-like thing to store something) we have nodes in the

linked list. It’s the same thing though, you can store whatever you want - objects, numbers,

strings, etc.

The only di�erence is in the way it’s represented. It’s like a snake: with a head and tail, and you

can only access one thing at a time - giving its own advantages and disadvantages. So if you

want to access the 5th thing, you can’t do linked_list[5], instead -> you would have to iterate

over the list from the beginning and then stop when the number hits 5.

Problem 1: Linked list methods

Here’s how a linked list looks like: Linked list: Methods

We have the basic functions of inse�, delete, search, etc which basically depend on 2 simple

conditions:

- We have to iterate to �nd the node

- And the only way we can go is forward: node.next

You might not see a Linked list ever in your life when you develop real things, but it’s still nice to

know something that exists. Along with that, there are ce�ain questions based around linked

lists, so it’s impo�ant to understand those as well.

30DaysCoding.com

Problem 2: Linked List cycle

⭐We want to �nd if there’s a cycle in a linked list. The �rst thing which comes to mind is ->

how do we do this? Just kidding -> it’s on the lines of -> maybe if we visit a node again, then we

would �nd a cycle

How can we �nd if we visited the node again? Maybe store the nodes as you’re iterating and

then see if you �nd the node in the set again.

Using a set:

public boolean hasCycle(ListNode head) {

Set<ListNode> set = new HashSet<>();

while(head!=null){

if(set.contains(head)){

return true;

}

set.add(head);

head=head.next;

}

return false;

}

This solution is absolutely correct, but it requires you to have a separate set (space

complexity), can we do something be�er? Think of something on the lines of 2 pointers. Can

we have a slow and fast potiner where the fast tries to catch the slower one? If it can, we �nd a

cycle, if not -> there’s no cycle.

Using slow and fast pointers:

while(

head!=null && slow.next !=null

&& fast.next!=null && fast.next.next != null) {

slow = slow.next;

fast = fast.next.next;

if(slow == fast) return true;

head = head.next;

}

30DaysCoding.com

Even simpler:

while(runner.next!=null && runner.next.next!=null) {

walker = walker.next;

runner = runner.next.next;

if(walker==runner) return true;

}

Problem 3: Deleting a node

⭐We can simply delete a node by moving the pointer from the previous node to the next

node. prev.next = node.next. The only simple catch is that we have to iterate to reach the

‘node’ and there is no instance given to us.

Pa� II

What if we want to delete a node without the head? You cannot iterate to reach that node, you

just have the reference to that pa�icular node itself.

There’s a catch here -> we can’t delete the node itself, but change the value reference. So you

can change the next node’s value to the next one and delete the next one. Like this:

node.val = node.next.val;

node.next = node.next.next;

Problem 4: Merge so�ed lists

Merge Two So�ed Lists

⭐We have 2 so�ed lists and we want to merge them into one.

Does so�ing tell you something? The element at the head would be the smallest.

Can we compare the heads every time and add those to the new list?

Ooooo, maybe yeah. Let’s try comparing and then move the counter of the bigger element.

if l1.val < l2.val:

cur.next = l1

l1 = l1.next

Otherwise, we do this for the other node (because that’s smaller)

30DaysCoding.com

else:

cur.next = l2

l2 = l2.next

What do we do once a list is done and the other one is le�? Simply move the new linked list to

the next pointer -> cur = cur.next and then add all the elements of the le� over list.

cur.next = l1 or l2 # iterate over and add all the elements

return head (the temporary new list that we made)

Problem 5: Merge K So�ed lists:

Leetcode 23. Merge k So�ed Lists
⭐ We have k lists and we want to merge all of those into a big one.

1. One simple way would be to compare every 2 lists, call this function, and keep doing

until we have a bigger list. Any other sho�er way?

2. We can be sma� about it and add all the lists into one big array or list -> so� the array

-> then put the elements back in a new linked list!

3. Or maybe we can use something called the priority Queue. We can add all the items to

the queue, take them out one by one and then store them in a new list. It will behave

like a normal queue or list, but save us a lot of time (complexity wise). Here’s more

about it. Here’s the priority queue solution: here.

Read📚

- Linked list: Methods

- How I Taught Myself Linked Lists. Breaking down the de�nition of linked list

- Introduction to Linked List

Videos🎥

- Data Structures: Linked Lists

- Interview Question: Nth-to-last Linked List Element

30DaysCoding.com

Questions 🤔

- 141. Linked List Cycle (Leetcode)

- Delete Node in a Linked List"

- 19. Remove Nth Node From End of List

- Merge Two So�ed Lists

- Palindrome Linked List

- 141. Linked List Cycle (Leetcode)

- Intersection of Two Linked Lists

- Remove Linked List Elements

- Middle of the Linked List

- lc 23. Merge k So�ed Lists

Sliding Window

Introduction

⭐ This is super useful when you have questions regarding sub-strings and sub-sequences for

arrays and strings. Think of it as a window which slides to the right or le� as we iterate through

the string/array.

30DaysCoding.com

Sliding window is a 2 pointer problem where the front pointer explores the array and the back

pointer closes in on the window. Here’s an awesome visualization to understand it more:

Dynamic Programming - Sliding Window

Problem 1: Max sum for consecutive k

⭐ We have an array [1,2,3,2,4] and k=2, we want to return the max sum of the array with size 2.

Looking at this for the �rst time, I would think of a brute force way to calculate all the

subarrays, �nd their sum, store the maximum, and return it.

However, that’s very expensive. We don’t really need to explore all the subarrays. Or, we can do

that in an easier way (which is also cheaper): SLIDING WINDOW.

This is how sliding window would work here:

- We sta� with a window of ‘k’ from the le�.

- We plan to move it to the right until the very end

- We remove the le�most element (from the window) and add the right one as we move

to the le�

- We store the sum for every window and then return the max at the very end.

Storing the sum

- You can either calculate the sum every time -> which will be expensive

- Or we can just �nd the sum of the window the �rst time

- And then subtract the le�most element and add the right element as we go, storing the

maximum sum till the end.

Here’s how the code looks.

int max_sum = 0;

int window_sum = 0;

/* calculate sum of 1st window */

for (int i = 0; i < k; i++) {

window_sum += arr[i];

}

30DaysCoding.com

/* Start the window from the left (k instead of 0)*/

for (int i = k; i < n; i++) {

window_sum += arr[i] - arr[i-k]; // remove the left and add the right

max_sum = max(max_sum, window_sum); // store the maximum

}

return max_sum;

⭐ A must need a�icle which covers more about this topic: Leetcode Pa�ern 2 | Sliding

Windows for Strings | by csgator | Leetcode Pa�erns

Problem 2: Fruits into basket

904. Fruit Into Baskets

Super interesting problem, let’s learn something cool from it. This is a sliding window problem

where we want to keep the maximum of 2 unique fruits at a time.

- We begin with 2 pointers, sta� and end.

- We move the end pointer when we’re exploring stu� in the array -> this is the fast

pointer moving ahead.

- We move the sta� pointer only when we’re shrinking the window.

⭐ Think of this as expanding the window and shrinking it once we go out of bounds.

Now, how do we expand or shrink here? We expand when we’re exploring, so pre�y much

always when we add an element to our search horizon - we increase the end variable. Let’s

take this step by step.

👉 We have 2 pointers, sta�/end, and a map -> we add elements with the ‘end’ pointer and

take out elements with the sta� pointer (shrinking)

while(end< tree.length){

int a = tree[end];

map.put(a, map.getOrDefault(a,0)+1);

if(map.get(a)==1)counter++;

end++;

something something

}

30DaysCoding.com

👉 Let’s take the end pointer till the array length, add the element to the map and then while

the number of unique fruits are more than 2, remove the element from the map

while(counter>2){

int temp = tree[start];

map.put(temp, map.get(temp)-1); # remove elem count

if(map.get(temp)==0)counter--; # decrease counter

start++; # increment start

}

Now, we want to store the maximum window size at all times -> a�er the second loop has

exited and we’re in the nice condition -> maximum 2 unique fruits. The conditions can be

changed here easily according to the number of unique fruits or min/max given to us.

Here’s the combined code:

public int totalFruit(int[] tree) {

Map<Integer, Integer> map = new HashMap<>();

int start=0, end=0, counter=0, len=0;

while(end< tree.length){

int a = tree[end];

map.put(a, map.getOrDefault(a,0)+1);

if(map.get(a)==1)counter++;

end++;

while(counter>2){

int temp = tree[start];

map.put(temp, map.get(temp)-1);

if(map.get(temp)==0)counter--;

start++;

}

len = Math.max(len, end-start);

}

return len;

}

⭐ ⭐ ⭐ A must need a�icle which covers more about this topic: Leetcode Pa�ern 2 | Sliding

Windows for Strings | by csgator | Leetcode Pa�erns

30DaysCoding.com

A template which can also help in solving these problems: Minimum window substring

template

Read📚

- Leetcode Pa�ern 2 | Sliding Windows for Strings | by csgator | Leetcode Pa�erns

- Sliding Window algorithm template to solve all the Leetcode substring search problems

Videos🎥

- Sliding Window Technique + 4 Questions - Algorithms

- Sliding Window Algorithm - Longest Substring Without Repeating Characters

(LeetCode)

- Minimum Window Substring: Utilizing Two Pointers & Tracking Character Mappings With

A Hashtable

Questions 🤔

- Maximum Average Subarray I

- 219. Contains Duplicate II

- 904. Fruit Into Baskets

- 1004. Max Consecutive Ones III

- 76. Minimum Window Substring

- 239. Sliding Window Maximum

30DaysCoding.com

Binary Search

Introduction

⭐ We use binary search to optimize our search time complexity when the array is so�ed (min,

max) and has a de�nite space. It has some really useful implementations, with some of the top

companies still asking questions from this domain.

The concept is: if the array is so�ed, then �nding an element shouldn’t require us to iterate

over every element where the cost is O(N). We can skip some elements and �nd the element in

O(logn) time.

Algorithm

⭐ We sta� with 2 pointers by keeping a low and high -> �nding the mid and then comparing

that with the number we want to �nd. If the target number is bigger, we move right -> as we

know the array is so�ed. If it’s smaller, we move le� because it can’t be on the right side,

where all the numbers are bigger than the mid value.

Here’s an iterative way to write the Binary search algorithm:

int left = 0, right = A.length - 1;

// loop till the search space is exhausted

while (left <= right)

30DaysCoding.com

{

// find the mid-value in the search space and

// compares it with the target

int mid = (left + right) / 2;

// overflow can happen. Use:

// int mid = left + (right - left) / 2;

// int mid = right - (right - left) / 2;

// key is found

if (x == A[mid]) {

return mid;

}

// discard all elements in the right search space,

// including the middle element

else if (x < A[mid]) {

right = mid - 1;

}

// discard all elements in the left search space,

// including the middle element

else {

left = mid + 1;

}

}

Here’s a beautiful visualization to understand it even more: Branch and Bound - Binary Search

Let’s understand the recursive solution now: we call the function for the le� side and right side

if the mid doesn’t match our target. We can either change the le�/right pointers through the

arguments or through cases -> arguments looks like an easier way. If we want to move to the

right, we change the le� pointer to mid+1, and if we wanna go le�, we change the right pointer

to mid-1.

binarySearch(arr, l, mid - 1, x)

binarySearch(arr, mid + 1, r, x)

Here’s the whole thing:

30DaysCoding.com

def binarySearch (arr, l, r, x):

Check base case

if r >= l:

mid = l + (r - l) // 2

If element is present at the middle itself

if arr[mid] == x:

return mid

If element is smaller than mid, then it

can only be present in left subarray

elif arr[mid] > x:

return binarySearch(arr, l, mid-1, x)

Else the element can only be present

in right subarray

else:

return binarySearch(arr, mid + 1, r, x)

else:

Element is not present in the array

return -1

Let’s discuss some intro level questions which can be solved by just the generic template for

the binary search algorithm.

Intro Problems

- Leetcode-First Bad Version

Find the �rst element which is bad -> simply use the binary search template.

def firstBadVersion(self, n) -> int:

left, right = 1, n

while left < right:

mid = left + (right - left) // 2

if isBadVersion(mid):

right = mid

else:

left = mid + 1

return left

- Sq�(x)

30DaysCoding.com

Find the square root of the number given. We can skip iteration over all the numbers and can

simply take the middle and go le� or right.

def mySqrt(x: int):

left, right = 0, x

while left < right:

mid = left + (right - left) // 2

if mid * mid <= x:

left = mid + 1

else:

right = mid

return left - 1

Problem 1: Max font size (Google internship)

⭐ Google likes to test you on word problems with core principles. So even if they ask you a

binary search question, it will be framed like a real life thing so that it’s much harder to

understand. They also test OOPS sometimes, by asking you to create classes and functions to

display di�erent things. Here’s the question:

Given:

1. Height and width of a screen where you have to type

2. Height and width of each character you type on the screen

3. Min and max range of the the font size of each character

Find the maximum font size such that the characters �t inside the screen

Once you understand the question, it’s trivial to think of a brute force problem: explore all the

possible font sizes and then see what �ts at the end. Return that. Thinking a li�le more, we see

that we have a range (so�ed) and we don’t really have to check for each font before choosing

the maximum one. Shoot -> it’s binary search.

Here’s how the pseudo code looks like:

def find_max_font():

max_font = 0

start, end = min_font, max_font

30DaysCoding.com

while start<=end:

mid_font = start + (end-start)//2

if font_fits(mid_font):

max_font = max(max_font, mid_font)

elif mid_font == 'too big':

move left if font is too big

end = mid

else:

move right if font is too small

start = mid

return max_font

This was an additional round (round 4), so they kept it on the easier side. Some things to keep

in mind while taking a tech interview:

- Be clear with your thoughts and communicate well.

- Ask questions, look for hints, and explain before writing code.

Problem 2: Search in rotated so�ed array

Leetcode #33 Search in Rotated So�ed Array

⭐ Problem: Array is so�ed but rotated. [4,5,1,2,3] -> 4 came to the front instead of the back. A

brute force is just iterating and �nding the element -> O(N). Can we do be�er?

This is a very interesting problem, because there are a couple of nice optimized solutions and

there’s a 50% chance you’ll see one of those (wow, I’m so sma�). I’ve seen a few questions

based on this, so it’s impo�ant to understand this before moving forward. Let’s dive right in.

We see that the array is so�ed but from a di�erent position...

Do you see 2 arrays which are so�ed? -> with a number in between which separates both the

arrays? Think how we can use binary search here.

Potential solution: Let’s call that a pivot point, separate out both the arrays, and �nd the

element in both separately using binary search? Does this make sense? No? Email us

30DaysCoding@gmail.com and let’s discuss it there.

30DaysCoding.com

int pivot = findPivot(array);

if (pivot > 0 && num >= array[0] && num <= array[pivot - 1]) {

return binarySearch(array, 0, pivot - 1, num);

} else {

return binarySearch(array, pivot, array.length - 1, num);

}

Now we want to �nd the pivot and then also write the binary search algo - which will be the

cliche binary search algorithm.

⭐ A�er some more digging, you’ll realize that this can be done with a single binary search

method as well. Let’s discuss that ->Instead of checking the mid with target (as done in a

generic binary search), we check the mid with sta� and end -> cause the array is disto�ed ->

so �rst we want to condition on that.

Let’s say the nums[sta�] is less than the nums[mid] -> we get our new sta� and end -> the

sta� and mid. We get this condition:

if (nums[start] <= nums[mid]){

if (target < nums[mid] && target >= nums[start])

end = mid - 1;

else

start = mid + 1;

}

So we just add one more condition to the already existing binary search conditions. We shi�

the sta� and end pointers a�er we’ve discovered the subarray where we need to shi�. Here’s

the full code:

public int search(int[] nums, int target) {

int start = 0;

int end = nums.length - 1;

while (start <= end){

int mid = (start + end) / 2;

30DaysCoding.com

if (nums[mid] == target)

return mid;

if (nums[start] <= nums[mid]){

if (target < nums[mid] && target >= nums[start])

end = mid - 1;

else

start = mid + 1;

}

if (nums[mid] <= nums[end]){

if (target > nums[mid] && target <= nums[end])

start = mid + 1;

else

end = mid - 1;

}

}

return -1;

}

Similar Pa�erns

⭐ ⭐ ⭐ There are other, advanced use cases of binary search where we want to �nd a

minimum time or a minimum space (and more). One catch with every binary search question is

the limit from low to high -> which isn’t trivial for those problems.

For instance, Leetcode : Minimum Number of Days to Make m Bouquets. We can make ‘m’

bouquets and each one needs ‘k’ �owers. It doesn’t look like a problem which can be solved

using binary search, but it can be. We can o�en de�ne a new function which does additional

condition mapping for us and then helps us �nd the middle.

Here’s a generic template and some awesome information to binary search questions and

identify problems where there is a limit de�ned. Binary search template.

Read

- Lecture 5 MIT : Binary Search Trees, BST So� | Lecture Videos

- Binary search cheat sheet for coding interviews. | by Tuan Nhu Dinh | The Sta�up

- Binary Search Algorithm 101 | by Tom Sanderson | The Sta�up

30DaysCoding.com

Videos🎥

- Introduction to Binary Search (Data Structures & Algorithms #10)

Questions 🤔

- Leetcode #704 Binary Search

- Leetcode #349 Intersection of Two Arrays

- Leetcode-First Bad Version

- Arranging Coins

- 35. Search Inse� Position

- Leetcode #33: Search in Rotated So�ed Array

- 34. Find First and Last Position of Element in So�ed Array

- Leetcode #230 Kth Smallest Element in a BST

- Find Peak Element

- Leetcode Split Array Largest Sum

- 875. Koko Eating Bananas

- Leetcode : Minimum Number of Days to Make m Bouquets

- Median of Two so�ed arrays

Recursion

Introduction

⭐ Think of it as solving smaller problems to eventually solve a big problem. So if you want to

climb Mount Everest, you can recursively climb the smaller pa�s until you reach the top.

Another example is that you want to eat ‘15 bu�er naan’, so eating all of them at once won’t be

feasible. Instead, you would break down those into 1 at a time, and then enjoy it on the way.

30DaysCoding.com

Solving a lot of recursive problems will help you understand 3 core concepts

- Recursion

- Backtracking

- Dynamic programming

Watch this amazing video: Recursion for Beginners: A Beginner's Guide to Recursion

⭐ These are some questions I have when I look at a recursive question/solution, you probably

have the same. Let’s try to �gure out them

- What happens when the function is called in the middle of the whole recursive

function?

- What happens to the stu� below it?

- What do we think of the base case?

- How do we �gure out when to return ?

- How do we save the value, specially in the true/false questions?

- How does backtracking come into place, w� recursion?

Let’s try to answer these one by one. A recursive function means that we’re breaking the

problem down into a smaller one. So if we’re saying function(x/2) -> we’re basically calling the

function again with the same parameters.

30DaysCoding.com

So if there’s something below the recursive function -> that works with the same parameter.

For instance, calling function(x/2) with x=10 and then printing (x) a�er that would print 10 and

then 5 and so on. Think of it as going back to the top of the function, but with di�erent

parameters.

The return statements are tricky with recursive functions. You can study about those things,

but practice will help you get over it. For instance, you have �bonacci, where we want to return

the sum of the last 2 elements for the current element -> the code is something like �b(n) +

�b(n-1) where �b() is the recursive function. So this is solving the smaller problem until when?

-> Until the base case. And the base case will return 1 -> because eventually we want the �b(n)

to return a number. This is a basic example, but it helps you gain some insights on the recursive

pa� of it.

Something complex like dfs or something doesn’t really return anything but transforms the 2d

matrix or the graph.

Backtracking is nothing but exploring all the possible cases by falling back or backtracking

and going to other paths.

Problem 1: Generate parentheses

22. Generate Parentheses

⭐ Generate balanced parentheses, given a number.

30DaysCoding.com

In simple words, we want to print out all the possible cases -> valid parentheses can be

generated.

One thing which strikes me is -> we need a way to add “(” and “)” to all possible cases and then

�nd a way to validate so that we don’t generate the unnecessary ones.

The �rst condition is if there are more than 0 open / le� brackets, we recurse with the right

ones. And if we have more than 0 right brackets, we recurse with the le� ones. Le� and right

are initialized at N - the number given.

if(left>0){

parentheses(list, s+"(", right, left-1);

}

if(right>0){

parentheses(list, s+")", right-1, left);

}

There’s a catch. We can’t add the “)” everytime we have right>0 cause then it will not be

balanced. We can balance that with a simple condition of le�<right.

Base case? When both right and le� are 0? -> cause we’re subtracting one as we go down to

0. Here’s the �nal thing:

public void dfs(List<String> list,String s, int right, int left){

if(right==0 && left==0){

list.add(s);

}

if(left>0){

dfs(list, s+"(", right, left-1);

}

if(left<right && right>0){

dfs(list, s+")", right-1, left);

}

}

Here are some other solutions to this: Generate Parentheses Solutions

Full code: Generate Parentheses Solution

30DaysCoding.com

Problem 2: Reverse linked list

⭐ Although this requires linked list knowledge, this is more of a recursion question. Let’s try to

solve this both iteratively and recursively to see what really is going on. Let’s discuss a sho�

iterative way of doing this.

- Move ahead with a pointer

- Point the current to previous -> curr.next = prev

- Move the prev by changing it to curr.

def reverseList(self, head):

prev = None

while head:

curr = head

head = head.next

curr.next = prev

prev = curr

return prev

Here’s a nice video with the explanation: Reverse a Linked List Recursively

We can also solve this recursively and it’s a great way to understand it in a be�er way. Here’s

how we do it:

- Store the recursive call in a node -> This takes the pointer to the end

- Point the curr’s next pointer to that

- Point head’s next to null -> this will be the tail (at every instance)

public ListNode reverseList(ListNode head) {

if(head == null || head.next==null){

return head;

}

ListNode n = reverseList(head.next);

head.next.next = head;

head.next = null;

return n;

}

30DaysCoding.com

It’s not a super impo�ant thing to know, but a nice-to-have as a concept when you’re

preparing.

Pa�ern: Breaking down

⭐ Tons of problems where you see a breakdown pa�ern can be solved using recursion. Some

of them are: power of two, power of three, division, multiples,

These are problems and pa�erns where we see a bigger number and we want to break it down

into a smaller thing to test. This is in alignment with the core of recursion, but it’s easier to

understand when math comes into play.

Let’s discuss a question, Power of 3. We want to return true if the number given is a power of 3.

- Iterate and �nd the powers -> match them

- Optimized: Iterate for less numbers

- Recursively try to solve smaller problems and break it down into n/3 every time (power

of 3)

bool isPowerOfThree(int n)

{

if(n<=0)return false;

if(n%3==0)

return isPowerOfThree(n/3);

if(n==1)return true;

return false;

}

Another question, to solidify the concept: Power of 2.

Super similar to power of 3, let’s look at possible solutions and maybe a new approach for this.

- Iterate and �nd powers, match if possible

- Optimized: Iterate for less numbers and then match

- Recursively break it down into n/2 if it doesn’t match and have base cases to check

def isPowerOfTwo(self, n: int):

30DaysCoding.com

if n==0:

return False

if n==1:

return True

if n%2!=0:

return False

return isPowerOfTwo(n//2)

Problem 3: Le�er combination of phone numbers

17. Le�er Combinations of a Phone Number

⭐ Interesting problem and can be solved both iteratively and recursively (same for any

problem).

The �rst thing which comes to mind is to have a map of the numbers and digits, so that we can

actually use it. The second thing which is trivial is that -> we would iterate over, take all the

possible ways, and then store it in a list. It’s basically a cliche backtracking problem where we

have some arrays and we want all the possible cases in those.

A recursive function would need to have something in the arguments which we add + we

update the array (using python sub-array)

combo(combination+letter, digits[1:])

We do this for every le�er and add a base case for adding the combination to the result array.

Here’s how the complete code looks like

def combo(combination, digits):

if len(digits)==0:

a.append(combination)

else:

for letter in phone[digits[0]]:

combo(combination+letter, digits[1:])

Here’s a java solution code for it: My recursive solution using Java

Let’s also look at an iterative way of solving this. We can simply take a Queue and use BFS (so�

of) to iterate and then add the le�ers when the conditions are true. We can iterate over the

digits, add the possible combinations if the size is valid.

30DaysCoding.com

Here’s a nice solution for it: My iterative solution, very simple under 15 lines.

Backtracking goes hand in hand with recursion and we’ve discussed many more questions and

pa�erns in that section, so de�nitely follow that a�er this.

Read📚

- Reading 10: Recursion

- Recursion for Coding Interviews: The Ultimate Guide

Videos🎥

- Fibonacci Sequence - Recursion with memoization

- Introduction to Recursion (Data Structures & Algorithms #6)

- Intro to Recursion: Anatomy of a Recursive Solution

Questions🤔

- Explore: Leetcode Pa� I

- Explore: Leetcode Pa� II

- 150 Questions: Data structures

Extra

- Complex Recursion Explained Simply

- Recursion Concepts every programmer should know

30DaysCoding.com

Backtracking

Introduction

⭐ Backtracking can be seen as an optimized way to brute force. Brute force approaches

evaluate every possibility. In backtracking you stop evaluating a possibility as soon as it breaks

some constraint provided in the problem, take a step back and keep trying other possible

cases, see if those lead to a valid solution.

Think of backtracking as exploring all options out there, for the solution. You visit a place,

there’s nothing a�er that, so you just come back and visit other places. Here’s a nice way to

think of any problem:

- Recognize the pa�ern

- Think of a human way to solve it

- Conve� it into code.

Problem 1: Permutations

46. Permutations

⭐We have an array [1,2,3] and we want to print all the possible permutations of this array. The

initial reaction to this is - explore all possible ways -> somehow write 2,1,3, 3,1,2 and other

permutations.

Second step, we recognize that there’s a pa�ern here. We can sta� from the le� - add the �rst

element, and then explore all the other things with the rest of the items. So we choose 1 ->

then add 2,3 and 3,2 -> making it [1,2,3] and [1,3,2]. We follow the same pa�ern with others.

How do we conve� this into code?

- Base case

- Create a temporary list

- Iterate over the original list

- Add an item + mark them visited

- Call the recursive function

- Remove the item + mark them univisited

30DaysCoding.com

Great a�icle on more backtracking problems templates: A general approach to backtracking

questions in Java (Subsets, Permutations, Combination Sum, Palindrome Pa�itioning)

if(curr.size()==nums.length){

res.add(new ArrayList(curr));

return;

}

for(int i=0;i<nums.length;i++){

if(visited[i]==true) continue;

curr.add(nums[i]);

visited[i] = true;

backtrack(res,nums, curr,visited);

curr.remove(curr.size()-1);

visited[i] = false;

}

There are also other solutions to problems like this one, where you can modify the recursive

function to pass in something else. We can pass in something like this: function(array[1:]) -> to

sho�en the array every time and then have the base case as len(arr) == 0.

Problem 2: Subsets

h�ps://leetcode.com/problems/subsets/

⭐We want all the possible subsets of an array [1,2,3]. Super similar to the permutations

question, but we don’t want to make the array sho�er or anything, Just explore all the possible

options.

We usually make a second function which is recursive in nature and call that from the �rst one

-> it’s easier, cleaner, and more understandable. There are ce�ain ways of doing it in the same

function, but this is be�er.

public List<List<Integer>> subsets(int[] nums) {

List<List<Integer>> list = new ArrayList<>();

Arrays.sort(nums);

30DaysCoding.com

backtrack(list, new ArrayList<>(), nums, 0);

return list;

}

Let’s build the backtrack function. Let’s use our template logic:

- Iterate over the array

- Add the item

- Backtrack - recursive call

- Remove the item

And then think of the base case...

public backtrack(List<List<Integer>> list , List<Integer> tempList, int []

nums, int start){

Add the BASE CASE here

for(int i = start; i < nums.length; i++){

tempList.add(nums[i]);

backtrack(list, tempList, nums, i + 1);

tempList.remove(tempList.size() - 1);

}

}

Base case?

We want all the possible cases -> just simply add to a new list that we pass in?

list.add(new ArrayList<>(tempList));

Something to note here is that we add a new copy of the array (templist) -> and not the same

templist because of recursion. Try it!

⭐ There are other solutions to problems like these and backtracking problems in general. You

can avoid the for loop and iterate over the array through the index you pass in to the function.

Here are some things to consider while considering this approach

- Base case: index reaching the end of the array

- Add the item, recurse, remove the item

- Recurse without considering the item

30DaysCoding.com

- We recurse 2 times - with and without the element -> which is the niche of

backtracking, where we have a CHOICE

So this is more on the lines of brute force when you have a CHOICE. A general approach there

is to recurse when you’ve chosen the item and when you’ve not chosen it.

private void recur(List<List<Integer>> acc, int [] array, Stack path, int

index){

if(array.length == index){

acc.add(new ArrayList<>(path));

return;

}

// with array[index]

path.push(array[index]); // add array[index]

recur(acc, ns, path, index + 1);

path.pop(); // remove array[index]

// without array[index]

recur(acc, ns, path, index + 1);

}

Read this carefully before moving forward. It’s impo�ant to make the right CHOICES in your life

haha. Make sure they’re the good ones. Read more here: A general approach to backtracking

questions in Java (Subsets, Permutations, Combination Sum, Palindrome Pa�itioning)

Problem 3: Combination Sum

39. Combination Sum

⭐ We want to return the numbers which would add up to the target number given. We have to

return all the possible combinations. So this is basically all subsets (with repeats allowed) with a

target given.

From the get go, I know one thing -> we want to explore all cases, �nd the ones where the

target matches, and then add that to a list, and return that list.

Backtracking template: Make a choice

- Iterate over the array

- Add the item

30DaysCoding.com

- Backtrack - recursive call

- Remove the item

for(int i = start; i < nums.length; i++){

tempList.add(nums[i]);

backtrack(list, tempList, nums, target_left - nums[i], i); // not i + 1

because we can reuse same elements

tempList.remove(tempList.size() - 1);

}

A good thing to note here is that we pass in the target_le� - nums[i] which basically means that

we’re choosing that element and then subtracting that from what we have in the argument. So

the base case with this would be

Target_le� == 0 -> because that’s when we know we can make the target.

One other thing to save some time and memory can be target_le� < 0 -> to return when we

reach here, because negative numbers can never become positive numbers. So once the

target_le� is below 0, it can never come up -> good to just return;

public List<List<Integer>> combinationSum(int[] nums, int target) {

List<List<Integer>> list = new ArrayList<>();

Arrays.sort(nums);

backtrack(list, new ArrayList<>(), nums, target, 0);

return list;

}

private void backtrack(List<List<Integer>> list, List<Integer> tempList,

int [] nums, int remain, int start){

if(remain < 0) return;

else if(remain == 0) list.add(new ArrayList<>(tempList));

else{

for(int i = start; i < nums.length; i++){

tempList.add(nums[i]);

backtrack(list, tempList, nums, remain - nums[i], i); // not i

+ 1 because we can reuse same elements

tempList.remove(tempList.size() - 1);

}

}

}

30DaysCoding.com

Give this a good read, watch this: AMAZON CODING INTERVIEW QUESTION - COMBINATION
SUM II (LeetCode) and make sure to understand it before moving forward.

Problem 4: N-queens

51. N-Queens

⭐ We want to place 8 queens such that no queen is interacting with each other. We see a

similar pa�ern, where the thinking goes like this -> we want to explore all possible ways such

that eventually we �nd an optimal thing, where queens don’t interact with each other.

We sta� by placing the �rst, then second… until there’s a con�ict. We then would have to come

back, change the previous queens, until we �nd the optimal way. We would have to go back to

the very sta� as well, and maybe try the whole problem again.

How to conve� this into code?

Similar to most backtracking problems, we will follow a similar pa�ern:

- Place the queen on a position

- Check if that position is valid === Call the recursive function with this new position

- Remove the queen from that position

board[row][col] = 'O' # the whole board

for i in range(0, N):

if isValidPosition(board[row][col]):

board[row][col] = 'Q' # set queen

recursive()

board[row][col] = 'O' # remove queen

Make sure to think about the base cases, recursive calls, the di�erent parameters, and

validating functions. Reference: Printing all solutions in N-Queen Problem

Here’s a beautiful visualization for this question: Backtracking - N-Queens Problem

Memoization

⭐ Memoization means storing a repetitive value, so that we can use it for later. A really nice

example here:

30DaysCoding.com

- If you want to climb Mount Everest, you can recursively climb the smaller pa�s until you

reach the top. The base case would be the top, and you would have a recursive function

climb() which does the job.

- Imagine if there are 4 camps to Mount Everest, your recursive function would make you

climb the �rst one, then both 1 and 2, then 1-2-3 and so on. This would be tiring, cost

more, and a lot of unnecessary work. Why would you repeat the work you’ve already

done? This is where memoization comes in.

- If you use memoization, you would store your camp ground once you reach it, so the

next time your recursive function works, it’ll get the camp ground value from the stored

set.

function(i, value, something...){

if base_case:

do something

if stored_value[i]:

return stored_value[i]

// do something (recursive call)

stored_value[i] = value

}

Dynamic programming is Backtracking + Memoization. That’s it. Every problem is a pa� of

this algorithm -> explore all possible ways and then optimize them in such a way that we don’t

explore already explored paths. Stop solving dynamic programming problems the iterative way.

Practice tons of recursion + backtracking problems, and then go the iterative way.

Read📚

- A deep study and analysis of Recursive approach and Dynamic Programming by solving

the most…

- Leetcode Pa�ern 3 | Backtracking | by csgator | Leetcode Pa�erns

- A general approach to backtracking questions in Java (Subsets, Permutations,

Combination Sum, Palindrome Pa�itioning)

30DaysCoding.com

- WTF is Memoization. Okay, those who saw this term for the… | by Leo Wu | Medium

Questions🤔

- Word Search

- Leetcode #78 Subsets

- 90. Subsets II

- Le�er Case Permutation

- 17. Le�er Combinations of a Phone Number

- Combinations

- 39. Combination Sum

- Leetcode : Combination Sum II

- 216. Combination Sum III

- Combination Sum IV

- 46. Permutations

- 47. Permutations II

- 31. Next Permutation

- 51. N-Queens

BFS, DFS

Introduction

⭐ These are searching techniques to �nd something. It’s valid everywhere: arrays, graphs,

trees, etc. A lot of people try to confuse this with being something related to graphs, but no ->

this is just a technique to solve a generic search problem.

Here’s a great visualizer tool: Graph Traversal (Depth/Breadth First Search)

30DaysCoding.com

Try to understand the iterative way of solving a DFS or BFS question and how things work.

There are 3 basic things

- Push the �rst node

- Iterate over all nodes (�rst time it’s just the root)

- Pop the top element

- Add the neighbors

- Repeat (Usually through the while or for loop)

Here’s a beautiful visualization of a search in a tree: Branch and Bound - Depth-Limited Search

Here’s a general iterative dfs pseudo-code template:

def dfs(root, target):

stack = []

stack.append(root) # add the first item

while len(stack)>0:

node = stack.pop() # pop the grid item

if(node == target):

return true

30DaysCoding.com

explore more

For trees -> if root.left or root.right

if (condition):

stack.append(new_item)

return false;

The second step is that of MEMOIZATION and we want to keep a track of all the nodes visited

when we’re iterating over. Here’s a complete version of a BFS algorithm where we keep track of

the visited node using an array discovered []

This could be anything - array, map, set - depending on the situation. The only thing we need is

to store the visited things so that we’re not repeating any work.

public static void BFS(Graph graph, int v, boolean[] discovered)

{

// create a queue for doing BFS

Queue<Integer> q = new ArrayDeque<>();

// mark the source vertex as discovered

discovered[v] = true;

// enqueue source vertex

q.add(v);

// loop till queue is empty

while (!q.isEmpty())

{

// deque front node and print it

v = q.poll();

System.out.print(v + " ");

// do for every edge `v --> u`

for (int u: graph.adjList.get(v))

{

if (!discovered[u])

{

// mark it as discovered and enqueue it

discovered[u] = true;

30DaysCoding.com

q.add(u);

}

}

}

}

Trying to think of a recursive way to do this is also very impo�ant. We call dfs for every node

a�er exploring the neighbors and can do that in a couple of ways -> inside the for loop or

outside the for loop a�er adding the neighbors to a list. Here’s an approach, also linking other

approaches below.

public static void recursiveBFS(Graph graph, Queue<Integer> q,

boolean[] discovered)

{

if (q.isEmpty()) {

return;

}

// deque front node and print it

int v = q.poll();

System.out.print(v + " ");

// do for every edge `v --> u`

for (int u: graph.adjList.get(v))

{

if (!discovered[u])

{

// mark it as discovered and enqueue it

discovered[u] = true;

q.add(u);

}

}

recursiveBFS(graph, q, discovered);

}

Other recursive ways: Depth First Search or DFS for a Graph

Why are we discussing the implementations for a simple search algorithm? Because this is the

basic thing that you need for a lot of problems. A lot of graph problems require you to know

30DaysCoding.com

dfs, bfs and this is one of those things, which is usually used with a combination of things. For

instance, you have a 2D matrix with something inside it, and you want the sho�est path ->

boom, BFS. Or maybe you have a graph where you want to �nd the ve�ex of it -> boom,

DFS/BFS. So it comes in many forms, and it’s very impo�ant to understand it completely before

moving forward.

Here are some implementations and use cases for DFS, BFS:

DFS:

- Find connected components in a graph

- Calculate the ve�ex or edges in a graph

- Whether the graph is strongly connected or not

- Wherever you want to explore everything or maybe go in depth

BFS

- Sho�est path algorithms and questions

- Ford fulkerson algorithm

- Finding nodes in a graph

- Wherever there is a sho�est thing/�nding something with the cheapest thing, etc.

Problem 1: Number of Islands

Number of Islands

30DaysCoding.com

⭐ Understanding this will de�nitely open your eyes about the visualization that happens in a

search algorithm, let’s go!

We have a 2d matrix, with 0’s and 1’s or some other symbols. We want to �nd the islands ->

where one island is one of more grid nodes which are connected together. Here’s an example:

Input: grid = [

["1","1","0","0","0"],

["1","1","0","0","0"],

["0","0","1","0","0"],

["0","0","0","1","1"]

]

Output: 3

We want to connect all the 1’s together, so that we form an island and then count those islands.

A human way to do this is just count the connected 1’s and then keep a track of those. How do

we code it?

⭐ The core principle of DFS kicks in -> we sta� from the 1st node, pop it, mark it visited,

explore all the neighbors, and then repeat. Once this exploration is done, we sta� with another

1, explore all of it’s connected 1’s and then mark those visited.

Every time we explore a new node island, we increase the count by 1 and eventually return that

number. Sounds easy? Go code it �rst… I’m waiting.

Glad you’re back, let’s solve this both iteratively and recursively.

Here’s a recursive implementation:

- We explore every element in the grid

- If we see a 1, we call the dfs function on it, which counts the connected nodes, turns

those into something other than 1

- We also increase the count every time we see a NEW node with 1

- In the dfs method below, we take in the grid element, explore all the sides (top, right,

bo�om, le�), and mark the node to something else every time

- We’re not counting anything in the dfs function, just exploring all sides, changing the

digit, and basically COVERING the island up

30DaysCoding.com

public int numIslands(char[][] grid) {

int count=0;

for(int i=0;i<grid.length;i++){

for(int j=0;j<grid[0].length;j++){

if(grid[i][j] == '1'){

dfs(grid, i, j);

count+=1;

}

}

}

return count;

}

public void dfs(char[][] grid, int i, int j){

if(i<0 || i>=grid.length || j<0 || j>=grid[0].length){

return;

}

if(grid[i][j]== '1'){

grid[i][j] = '#';

dfs(grid, i+1,j);

dfs(grid, i,j+1);

dfs(grid, i,j-1);

dfs(grid, i-1,j);

}

}

Here’s an iterative way to solve this:

The idea is the same, we sta� from the 1s, explore all the connected components, mark them

visited, and then increase the count for every 1. These are the steps:

- Iterate over the �nd the 1’s

- Call dfs for every 1 found

Iterative DFS

- Push the grid node for the 1 to the stack

- Mark the node visited (change it to something else)

- Pop the node, explore all the 4 valid neighbors

- Add those neighbor nodes to the stack

30DaysCoding.com

count=0

for i in range(len(grid)):

for j in range(len(grid[0])):

if grid[i][j]=='1':

dfs(grid, i, j)

count+=1

return count

def dfs(grid, i, j):

s=[]

s.append((i,j))

while len(s)>0:

a,b = s.pop()

grid[a][b]='X'

if a>0 and grid[a-1][b]=='1':

s.append((a-1,b))

if b>0 and grid[a][b-1]=='1':

s.append((a,b-1))

if a<len(grid)-1 and grid[a+1][b]=='1':

s.append((a+1,b))

if b<len(grid[0])-1 and grid[a][b+1]=='1':

s.append((a,b+1))

Here’s a nice solution video explaining the same:

GOOGLE CODING INTERVIEW QUESTION - NUMBER OF ISLANDS (LeetCode)

Pa�ern: 2D Matrix

⭐ There are tons of problems where there’s something to �nd or connect in a 2d array where

the confusions just increase. This approach will help you connect the dots and approach those

problems with DFS or BFS iteratively on that array.

30DaysCoding.com

There’s nothing special here, but it’s good to notice how we can take [0,0] as the root and

basically conve� this into a 2d matrix. This is a general way of adding the point to the queue in

java, with the help of an additional class Pair => q.o�er(new Pair(i, j));

def dfs(grid, row, col):

stack = []

stack.append((row,col)) # add the first item

while len(stack)>0:

row,col = stack.pop() # pop the grid item

grid[row][col]='X' # mark it visited

conditions come here

if (condition):

stack.append(new_item)

Problem 2: Level order traversal

LeetCode 102 - Binary Tree Level Order Traversal [medium]

Print the tree in a level order -> le� to right, level by level.

- Try to visualize before writing code.

- How can we get the levels at once?

- How does the core of DFS/BFS/Stack/Queue work?

Here’s how I would do it -> Think of adding the root, take out the root, add the whole second

layer or basically all the children of the previous layer’s nodes. The catch here is to add the

whole level at once. We can do that by ge�ing the size of the queue and then iterating over it

every time.

for(int i=0 ; i< size; i++){

TreeNode node = queue.remove();

// Temporary list for that level

30DaysCoding.com

list.add(node.val);

if(node.left!=null)

queue.add(m.left);

if(node.right!=null)

queue.add(m.right);

}

At the end, the queue would have the next level and we’ll repeat the whole process again for

the next nodes. Here’s how the code looks:

Set<Integer> solution = new HashSet<>();

Queue<TreeNode> queue = new LinkedList<>();

queue.add(root);

while(!q.isEmpty()){

List<Integer> list = new ArrayList<>();

int children = queue.size();

// iterate over all the children

for(int i=0 ; i<children; i++){

TreeNode node = queue.remove();

// Temporary list for that level

list.add(node.val);

if(node.left!=null)

queue.add(m.left);

if(node.right!=null)

queue.add(m.right);

}

solution.add(new ArrayList<>(list));

}

return solution;

Problem 3: Ro�en oranges

994. Ro�ing Oranges

30DaysCoding.com

⭐ Every minute a fresh orange turns ro�en if it’s around a ro�en orange. Similar to life -> if

you’re around negative people, you tend to be negative. Keep a positive outlook, help

everyone, and take things forward!

This is an amazing question -> let’s understand the iterative way of doing this and how to solve

any searching related question with a stack or queue -> iteratively. We have the minimum

condition here, so using BFS is the way to go! A simple pa�ern, as discussed before is:

- Prepare the stack/queue -> Add the initial nodes

- Pop the node from stack, mark it visited, add the valid neighbors

- Repeat the process for the new nodes.

First step is to prepare the queue. We add the ro�en oranges (represented by 2) to the queue

and also count the total number of oranges. 0 -> means an empty place.

for (int i = 0; i < grid.length; i++) {

for (int j = 0; j < grid[0].length; j++) {

if (grid[i][j] != 0) total++;

if (grid[i][j] == 2) q.offer(new Pair(i, j));

}

}

We have the queue ready and now we iterate until it’s empty: while (stack.isEmpty()) {}. We

want to add all the neighbors of the current orange, which are in 4 directions and here’s

something to note when you have conditions like this.

When we want to traverse in all 4 directions, or maybe in 8 directions if we have a double

condition, we can make a directions dictionary and iterate over it. Something like: [[0,1], [0,-1],

[1,1], [1, 0]] or int[][] dirs = {{1,0},{-1,0},{0,1},{0,-1}};

while (! q.isEmpty()) {

int size = q.size();

rotten += size;

// if the total number of rotten oranges matches our local variable

// then return the time it took

if (rotten == total_rotten) return time;

time++;

30DaysCoding.com

// something

}

Now, we add the logic for adding the neighbors.

- Iterate in all 4 directions

- Check if it’s a fresh orange -> continue the loop if it’s ro�en or empty cell

- Change the fresh orange into a ro�en one

- Add the new position in the queue

- Increase the ro�en orange for the base case -> ro�en_oragen == total

for(int i = 0 ; i < size ; i++) {

int[] point = queue.poll();

for(int dir[] : dirs) {

int x = point[0] + dir[0];

int y = point[1] + dir[1];

// check for the conditions

// continue if it's rotten or empty

// we're only concerned about the fresh ones here

if(x < 0 || y < 0 || x >= rows || y >= cols || grid[x][y] == 0 ||

grid[x][y] == 2) continue;

// turn fresh into rotten

grid[x][y] = 2;

queue.offer(new int[]{x , y});

rotten_oranges++;

}

}

Complete code here: [Java] Clean BFS Solution with comments

Video solution: AMAZON CODING INTERVIEW QUESTION - ROTTING ORANGES

Read📚

- Leetcode pa�erns 1

30DaysCoding.com

- Leetcode Pa�erns 2

- Depth-First Search (DFS) vs Breadth-First Search (BFS) – Techie Delight

Videos🎥

- Breadth First Search Algorithm | Sho�est Path | Graph Theory

- Depth First Search Algorithm | Graph Theory

- Breadth First Search grid sho�est path | Graph Theory

Questions 🤔

- Flood Fill

- Leetcode - Binary Tree Preorder Traversal

- Number of Islands

- Walls and Gates

- Max Area of Island

- Number of Provinces

- 279. Pe�ect Squares

- Course Schedule

- C/C++ Program for Detect cycle in an undirected graph

- 127. Word Ladder

- 542. 01 Matrix

- Ro�ing Oranges

- 279. Pe�ect Squares

- 797. All Paths From Source to Target

- 1254. Number of Closed Islands

30DaysCoding.com

Dynamic Programming

Introduction

⭐ Dynamic programming is nothing but recursion + memoization. If someone tells you

anything outside of this, share this resource with them. The only way to get good at dynamic

programming is to be good at recursion �rst. You de�nitely need to understand the magic of

recursion and memoization before jumping to dynamic programming.

The day when you solve a new question alone, using the core concepts of dynamic

programming -> you’ll be much more con�dent a�er that.

So if you’ve skipped the recursion, backtracking, and memoization section -> go back and

complete those �rst! If you’ve completed it, keep reading. You will only get be�er at dynamic

programming (and problem solving in general) by solving more recursion (logical) problems.

Problem 1: 01 Knapsack

⭐ This is the core de�nition of dynamic programming. Understanding this problem is super

impo�ant, so pay good a�ention. Every problem in general, and all DP questions have a

CHOICE at every step.

We have a weights array and a values array, where we want to choose those values which will

return us the maximum weight sum (within the limit). There is a max weight given, which we

have to take care of.

Just from the �rst glance, I see that maxWeight will help us with the base case. At every step,

we have 2 CHOICES:

30DaysCoding.com

- Include the value: Take value from values[index] + move ahead

- Exclude the value: Just move ahead

It's also impo�ant to think about what your recursive function would look like. What values to

pass, how will we iterate over the array, how will we use the base case through those

arguments.

Thinking about the arguments, a good recursive function would be passing in the weights,

values, index, and the remaining weight? That way remaining_weight == 0 can be our base

case. You can absolutely have other recursive functions with di�erent arguments, it’s about

making things easier.

//include the ith item

int include = v[i] + knapsack(w, v, maxWeight - weights[i], i+1);

// don't include

int exclude = knapsack(weights, values, maxWeight, i+1);

We think of the base case now. A straigh�orward one looks like maxWeight === 0, which is also

the REMAINING weight as we’re subtracting the weight every time we’re iterating with the

included item.

30DaysCoding.com

The second one and the most usual one is when you reach the end of the array, so index ===

weights.length. Can also be values.length as they’re the same.

Here’s the code for it:

knapsack(weights [], values [], maxWeight = 0, index = i, memo_set = set())

{

if(i == weights.length || maxWeight == 0){

return 0;

}

//include the ith item

int include = v[i] + knapsack(w, v, maxWeight - weights[i], i+1);

// don't include

int exclude = knapsack(w, v, maxWeight, i+1);

return Math.max(include, exclude);

}

// w -> weights, v -> values

There is a problem here, we’re doing a lot of repetitive work here, do you see it? No? Go wash

your eyes.

We’re re-calculating a lot of states -> where the value maxWeight - weights[i] value is

something. For example 5 is 8-3 but it’s also 9-4. So we don’t want to do this, how can we stop

this? MEMOIZATION

Simply store the max value and return it with the base case. You can think of memoization as

your SECOND base case.

knapsack(weights [], values [], maxWeight = 0, index = i, memo_set = set())

{

if(i == weights.length || maxWeight == 0){

return 0;

}

String key = maxWeight + "unique Key" + i;

// check if the key is inside this set

if(memo_set.containsKey(key)){

return memo_set.get(key);

30DaysCoding.com

}

//include the ith item

int include = v[i] + knapsack(w, v, maxWeight - weights[i], i+1, set);

// don't include

int exclude = knapsack(w, v, maxWeight, i+1, set);

memo_set.put(key,Math.max(op1, op2));

return Math.max(include, exclude);

We set the key and max value in the set, and then use that in the base case to return when that

condition is reached. This is the recursive approach and once you’ve understood how the basis

of this works, you can go to the iterative version. It’s very impo�ant to solve and understand it

recursively before moving forward.

- Watch this awesome visualization to understand it more: Dynamic Programming - Knapsack

Problem

- Read more here: 0–1 Knapsack Problem – Techie Delight

Problem 2: Min path sum

64. Minimum Path Sum

⭐ Most of the dynamic programming (and all other) questions are solved by making a choice!

Let’s discuss a question. Find the minimum cost path from top le� to bo�om right of a 2D

matrix.

A human way to look at this is to make quick decisions and see where the biggest numbers are,

and then choose them. However, humans would fail if this grid is really big.

30DaysCoding.com

How do we solve this using a program?

At every step, we make a CHOICE. Either we go down or we go right. And this is where

recursive kicks in, making this a dynamic programming question -> where we try to solve small

problems to eventually solve the big one.

At every step, we’ll do these 2 things:

bottom_sum = current_sum + grid[row+1][col]

right_sum = current_sum + grid[row][col+1]

And now we conve� this into recursive code,

current_sum = grid[row][col]

max_sum = min(

current_sum + function(grid[row+1][col]),

current_sum + function(grid[row][col+1]

))

Now we can make it even easier by just passing the rows and columns instead of the whole

grid and bringing out some things to clean it.

current_sum = grid[row][col]

max_sum = current_sum + min(function(row+1, col),function(row, col+1]))

Instead of calculating the sum at every step, we pass it back to the recursive function who

does the magic for us. We would have a BASE CASE which helps us in solving the smaller

problem, which eventually solves the big one.

// this is the exit of the recursion

if(row == 0 && col == 0) return grid[row][col];

/** When we reached the first row, we could only move horizontally.*/

30DaysCoding.com

if(row == 0) return grid[row][col] + min(grid, row, col - 1);

/** When we reached the first column, we could only move vertically.*/

if(col == 0) return grid[row][col] + min(grid, row - 1, col);

return grid[row][col] + min(f(grid, row - 1, col), f(grid, row, col - 1));

More here: Minimum path sum solution.

Problem 3: Minimum cost of tickets

⭐ Another interesting problem to discuss, let’s do it.

We’re going on a trip and we want to make it as cheap as possible (cause we’re all cheap

people). We want to save as much money as possible, and we’re gonna write a piece of code

which does it for us.

Here’s the deal: We have costs for 1, 7, and 30 days, and an array of the days we’re travelling,

we want to optimize it such that the cost is the lowest. Solving it a humanly way, we would

check all the possible ways and then make a decision -> hence making it a DP problem -> we

explore all the possible cases with brute force and then memoize it.

Exploring all the cases:

int option_1day = costs[0] + rec(days, costs, current_day);

int option_7days = costs[1] + rec(days, costs, current_day);

int option_30days = costs[2] + rec(days, costs, current_day);

We need to have a way to change the ‘days’ such that -> if we choose option 1 (1 day), we want

to move to the next POSSIBLE day. If we choose option 2 (7 days), we want to move to the next

POSSIBLE day within 7 days and the same with 30 days. So there’s a condition before we

recurse every time -> we want to change the current_day variable

Here’s the condition:

for(int i=0; i < days.length; i++){

// If we go beyond the possible limit, break

30DaysCoding.com

if(days[i] >= days[current_day] + 1, 7, 30){ // For all 3 cases

break;

}

}

Base case? When the index or the current_day goes beyond the days array

if(current_day >= days.length) return 0;

This can be di�erent depending on your conditions -> maybe you’re iterating over the days

array through a for loop and creating some magic there. A right base case would probably be

validating the current day or something in that case.

Here’s the combined code solution:

private static int rec(int days[], int costs[], int i, int dp[]){

if(i >= days.length) return 0;

int option_1day = costs[0] + rec(days, costs, i+1, dp);

int k = i;

for(; k <days.length; k++){

if(days[k] >= days[i] + 7){

break;

}

}

int option_7days = costs[1] + rec(days, costs, k, dp);

for(; k <days.length; k++){

if(days[k] >= days[i] + 30){

break;

}

}

int option_30days = costs[2] + rec(days, costs, k, dp);

return Math.min(1Day, Math.min(7Days, 30Days));

}

30DaysCoding.com

Problem 4: Buy and sell stocks 3

Leetcode - Best Time to Buy and Sell Stock III

⭐ Try this �rst: Q. 121. Best Time to Buy and Sell Stock, although they’re not similar, but it’s nice

to get a feel of that one before coming to this one.

Let’s discuss this one. We have an array, we have to buy and then sell - 2 times, and then �nd

the maximum pro�t we can earn by doing this. Eg [3, 3, 5, 0, 0, 3, 1, 4], let’s solve this in a human

way.

Buy at 3, sell at 5. Then buy at 0, sell at 4. Total is 6. Easy? I just thought of the di�erence as I

was going, what could be the maximum di�erence. However, this approach can only work for

very simple examples or the �rst question (Q. 121. Best Time to Buy and Sell Stock).

Let’s solve it through code.

At every step when we iterate from le� to right, we have a CHOICE. It’s a li�le complex, think a

li�le. The CHOICE is to either buy or not buy OR sell or not sell when you’re at that step. We do

this because we’re buying or selling only 2 times.

Here’s how the choices look:

// if we're buying right now

lets_buy = function() - array[i]

lets_not_buy = function()

// if we're selling right now

lets_sell = function() + array[i]

lets_not_sell = function()

Here’s the code for this: Buy and Sell 3 solution

We’re coming up with a dynamic programming guide with 25 questions discussed in complete

detail, stay tuned for that. Subscribe to our newsle�er here for more.

Problem 5: Paint house

leetcode 256. Paint House (Python)

30DaysCoding.com

⭐ There are a row of n houses, each house can be painted with one of the three colors: red,

blue or green. The cost of painting each house with a ce�ain color is di�erent. You have to

paint all the houses such that no two adjacent houses have the same color.

At every step, we have a CHOICE to choose a color and then see what would be the maximum

at the very end. So we explore all the possible cases, remove the repetitive cases using

memoization, and eventually solve the question by ‘DP’. At every step,

- If you choose red, then choose the min of blue or green from previous row

- If you choose blue, then choose the min of red or green from previous row

- If you choose green, then choose the min of red or blue from previous row

public int minCost(int[][] costs) {

if(costs == null || costs.length == 0) return 0;

int n = costs.length;

for(int i = 1; i < n; i++){

costs[i][0] += Math.min(costs[i-1][1], costs[i-1][2]);

costs[i][1] += Math.min(costs[i-1][0], costs[i-1][2]);

costs[i][2] += Math.min(costs[i-1][0], costs[i-1][1]);

}

return Math.min(costs[n-1][0], Math.min(costs[n-1][1], costs[n-1][2]));

}

Solution Video: LINKEDIN - PAINT HOUSE (LeetCode)

Problem 6: Edit Distance

LeetCode – Edit Distance

⭐ Here’s the question: We have 2 strings and we want to transform the �rst one into the

second one using minimum operations. Every time, you can either inse�, delete, or change the

le�er from any of the strings.

WOW, I have no clue how to solve this to be honest :P. Let’s think together.

We have 3 CHOICES, edit/delete/or inse�ing a new character. This gives me a hint that at every

step, I can do 3 things and eventually explore all possible ways to �nd the answer. We can then

30DaysCoding.com

use memoization for repetitive work and we’ll have our answer. Sounds easy? … no it’s not.

Come on, when did DP become easy?

Just kidding, let’s make it easy. 3 choices? 3 recursive options -> inse�, delete, and update. But

there’s a catch, deletion doesn’t mean we’re deleting -> we’ll just call the string[1:] or

string.substring(1) in the recursive function to create the deletion identity. Same for inse�ing ->

adding a le�er in one string, means deleting something from the other (in a way), so we can

mix and match the deleting/inse�ion operations. Coming to update -> that just means we’re

changing that le�er and moving forward, so the recursive call will be �rst[1:] and second[1:].

Here’s how the recursive calls look like:

int delete = rec(s, t.substring(1));

int insert = rec(s.substring(1), t);

int update = rec(s.substring(1), t.substring(1));

Base case? You forgot right? Well, forget ge�ing that internship then. Just kidding, let’s think of

the base case -> if we have both the strings inside our function -> if one of them �nishes

(because we’re taking substrings) -> we should handle those cases. Here’s how that will look:

if(first_string.length() == 0)

return second_string.length();

if(second_string.length() == 0)

return first_string.length();

Matching case? We also want to recurse with substring(1:) when both the characters match.

This is the same as the update operation but without adding 1 to the �nal result.

Watch this awesome visualization: Dynamic Programming - Levenshtein's Edit Distance

Here’s the combined result:

public static int rec(String s, String t){

if(first.length() == 0)

return second.length();

if(first.length() == 0)

return second.length();

30DaysCoding.com

// if characters are same

if(s.charAt(0) == t.charAt(0))

// don’t add 1 here as the characters match

return rec(s.substring(1), t.substring(1));

else{

int op1 = rec(first.substring(1), second.substring(1));

int op2 = rec(firs, second.substring(1));

int op3 = rec(first.substring(1), second);

return 1 + Math.min(op1, Math.min(op2, op3));

}

}

Here’s the full solution: luckykumardev/leetcode-solution

Read📚

- My experience and notes for learning DP

- Dynamic Programming (Theory - MIT)

- Dynamic Programming (Theory MIT)

- Dynamic Programming Pa�erns

Videos🎥

- MIT Playlist: 19. Dynamic Programming I: Fibonacci, Sho�est Paths

- Dynamic Programming - Learn to Solve Algorithmic Problems & Coding Challenges

Questions 🤔

Easy

- 53. Maximum Subarray

- 509. Fibonacci Number

- 70. Climbing Stairs

- Min Cost Climbing Stairs

- N-th Tribonacci Number

30DaysCoding.com

Medium

- 322. Coin Change

- 931. Minimum Falling Path Sum

- Minimum Cost For Tickets

- 650. 2 Keys Keyboard

- Leetcode #152 Maximum Product Subarray

- Triangle

- 474. Ones and Zeroes

- Longest Arithmetic Subsequence

- 416 Pa�ition Equal Subset Sum

- 198. House Robber

- Leetcode - Decode Ways

- 139. Word Break

- LeetCode – Edit Distance

- 300. Longest Increasing Subsequence

- 787. Cheapest Flights Within K Stops

Trees

Introduction

⭐ I love trees, but actual ones - not these. Just kidding, I love all data structures. Let’s discuss

trees. They’re tree-like structures (wow) where we can store di�erent things, for di�erent

reasons, and then use them to our advantage. Here’s a nice depiction of how the actually look:

30DaysCoding.com

Recursion is a great way to solve a lot of tree problems, but the iterative ones actually bring out

the beauty of them. Making a stack and queue, adding and popping things from that, exploring

children, and repeating this would de�nitely make sure you understand it completely. You

should be seeing this visually in your head, when you do it iteratively.

Pa�ern: Traversals

⭐ There are 3 major ways to traverse a tree and some other weird ones: let’s discuss them all.

The most famous ones are pre, in, and post - order traversals. Remember, in traversals -> it’s

not the le� or right node (but the subtree as a whole).

Inorder traversal

Let’s sta� with inorder traversal: We de�ne a stack and will traverse the tree iteratively.

Recursive solutions to these 3 basic ones are pre�y straigh�orward, so we’ll try to understand

them a li�le more with iterative ones.

We sta� with the root, move until it’s null or the stack is empty. We move to the le� if we can, if

not -> we pop, add the popped value and then move right.

30DaysCoding.com

List<Integer> res = new ArrayList<>();

if(root==null) return res;

Stack<TreeNode> stack = new Stack<>();

TreeNode curr = root;

while(curr!=null || !stack.isEmpty()){

if(curr!=null){

stack.push(curr);

curr = curr.left;

}else{

curr = stack.pop();

res.add(curr.val);

curr = curr.right;

}

}

return res;

Pre order traversal

⭐ We add the root, then the le� subtree, and then the right subtree. It’s a stack so things work

in the opposite direction -> �rst in last out, so make sure to check that carefully.

Stack<Node> stack = new Stack();

stack.push(root);

result = [];

while (!stack.empty())

{

Node curr = stack.pop();

result.push(curr.data);

// print node

if (curr.right != null) {

stack.push(curr.right);

}

if (curr.left != null) {

stack.push(curr.left);

}

}

30DaysCoding.com

Post order traversal

⭐ We visit the le� subtree, then the right subtree, and then the root. So we simply add the le�

item �rst, then the right item, and the root.

Stack<Node> stack = new Stack();

stack.push(root);

result = []

while (!stack.empty())

{

Node curr = stack.pop();

result.push(curr.data);

if (curr.left != null) {

stack.push(curr.left);

}

if (curr.right != null) {

stack.push(curr.right);

}

}

// Print the REVERSE of the result.

// Or store it in a stack

Additional questions

- LeetCode 102 - Binary Tree Level Order Traversal [medium]

- Kth Smallest Element in a BST

- Leetcode #98 Validate Binary Search Tree

- Binary Tree Zigzag Level Order Traversal

- Binary Tree Right Side View

Applications

- Number of nodes

- Height of tree or subtree

30DaysCoding.com

- Heap so�ing

Problem 1: Min depth of a tree

⭐ The question is -> what’s the minimum depth or where is the lowest child for the tree.

From the get go, I’m thinking of �nding a node which doesn’t have any child?

It’s about the height, so I’m thinking of going level by level and then seeing when we hit a node

with no children? Ooooooo.. Sounds like a good plan, let’s do that.

Let’s go level by level and see where the node with no children is -> we return it as soon as we

�nd that. Here’s the code for it:

public static int depthOfTree(TreeNode root) {

Queue<TreeNode> queue = new LinkedList<>();

queue.add(root);

int minimumTreeDepth = 0;

while (!queue.isEmpty()) {

minimumTreeDepth++;

int levelSize = queue.size();

for (int i = 0; i < levelSize; i++) {

TreeNode currentNode = queue.poll();

// leaf node condition

if (currentNode.left == null && currentNode.right == null)

return minimumTreeDepth;

// explore the children and add those

if (currentNode.left != null)

queue.add(currentNode.left);

if (currentNode.right != null)

queue.add(currentNode.right);

// add other neighbors if this is a n-ary tree

}

}

return minimumTreeDepth;

}

This is the same as level order tree traversal -> we push the node initially, pop it -> add the

children on the next level and then repeat the process.

30DaysCoding.com

Problem 2: LCA of binary tree

236 - Lowest Common Ancestor of a Binary Tree

⭐ Problem: Find the lowest common parent of 2 given nodes in a tree. They could be any 2

nodes.

Damn, what a nice question. We were traversing down for this whole time, but it sounds like we

want to go up from both the nodes and then �nd the parent which comes �rst. How do we do

that? (no clue, BYE)

Just kidding, let’s do it. The �rst thing which comes to my mind is that we can sta� from the

node, maintain a separate list, add parent-node relation there and then maybe look at that list

to �nd that �rst parent? It is very impo�ant to understand this (so writing code iteratively) and

then thinking more towards writing a recursive solution.

Having a parent node relation is impo�ant here, so here’s the �rst thing I think: We make a map

and store {parent: node} inside that map as we go down.

// store parent and node relation if valid

parent_map[node.left] = node

parent_map[node.right] = node

So we do a simple iterative DFS, store the parent node relation, and then come back to see that

relation to �nd the common node.

while node_1 not in parent_map or node_2 not in parent_map:

node = stack.pop()

if node.left != None:

parent_map[node_1.left] = node_1

stack.append(node.left)

if node.right != None:

parent_map[node.right] = node

stack.append(node.right)

Here we �ll in the parent_map and try to build the parent node relation for all nodes. Once we

have the map ready, we can use that map to go back and �nd the common ancestor. We make

a set, add the �rst node in the set while iterating over the parent_map, then we check for the

30DaysCoding.com

node_2 in the set and when we �nd that -> we break the while loop and return node_2 at that

point.

node_set = set()

while node_1:

node_set.add(node_1)

node_1 = parent_map[p]

while node_2 not in node_set:

node_2 = parent_map[node_2]

return node_2

It’s o�en hard to come up with recursive solutions instantly, but over time - you’ll be more

comfo�able (I’m not :P) to bring them up.

More solutions here: Lowest Common Ancestor of a Binary Tree

Problem 3: Binary tree to BST

⭐ We have a binary tree and we want to conve� that into a binary search tree, where the le�

subtree is smaller than the root, and the right subtree is greater than the root.

Doesn’t this look similar to the inorder traversal ??? Inorder traversal gives us the binary search

tree in a so�ed order, so we can use that to bring it back up as well.

Wait… whaaaat? Haha yeah.

We just need an iterator to traverse through the next nodes from an array, list, set, or

something else.

Here’s how it’ll look:

convertToBST(Node root, Iterator<Integer> it)

{

if (root == null) {

return;

}

convertToBST(root.left, it);

root.data = it.next();

convertToBST(root.right, it);

30DaysCoding.com

}

A solution video explaining the same: Conve�ing Binary Tree to Binary Search Tree without

changing spatial structure

Read📚

- Leetcode Pa�ern 0 | Iterative traversals on Trees | by csgator | Leetcode Pa�erns

- Inorder Tree Traversal – Iterative and Recursive – Techie Delight

Videos🎥

- Data structures: Introduction to Trees

- Binary Tree Bootcamp: Full, Complete, & Pe�ect Trees. Preorder, Inorder, & Postorder

Traversal.

- 5. Binary Search Trees, BST So�

Questions 🤔

- Leetcode - Binary Tree Preorder Traversal

- Leetcode #94 Binary Tree Inorder Traversal

- Leetcode - Binary Tree Postorder Traversal

- Leetcode #98 Validate Binary Search Tree

- 783. Minimum Distance Between BST Nodes

- Symmetric Tree

- Same Tree

- Leetcode #112 Path Sum

- Leetcode #104 Maximum Depth of Binary Tree

- Leetcode #108 Conve� So�ed Array to Binary Search Tree

- Leetcode #98 Validate Binary Search Tree

- Binary Search Tree Iterator

- 96. Unique Binary Search Trees

- Serialize and Deserialize BST

30DaysCoding.com

- Binary Tree Right Side View

- 96. Unique Binary Search Trees

- Binary Search Tree Iterator

Graphs

Introduction

⭐ A lot of graph problems are covered by DFS, BFS, topo so� in general -> but we’re going to

do a general overview of everything related to graphs. There are other algorithms like

Djikstra’s, MST, and others - which are covered in the greedy algorithms section.

A lot of graph problems are synced with other types = dynamic programming, trees, DFS, BFS,

topo so�, and much more. You can think of those topics so� of coming under the umbrella of

graph theory sometimes.

Problem 1: Finding the root ve�ex

30DaysCoding.com

⭐ A human way of �nding the root will be to look at 4 and say that there are no incoming

edges at 4, so it’s the root. Think of it in a tree like format, where the root is at the top and we

have children below it.

How do we code this?

We want to �nd a node which doesn’t have any incoming nodes. So we sta� from the �rst

node, go to the neighbors, mark all the neighbors visited (and not ve�ex -> because they have

an incoming edge). We keep doing this until we reach the end and have a node which is not in

the visited set.

An impo�ant pa� of graph algorithms is also to transform the given input into an adjacency

list. We iterate over the edges and make a mapping from source to destination, something like

this:

function(List<Edge> edges, int N)

{

adjList = new ArrayList<>();

for (int i = 0; i < N; i++) {

adjList.add(new ArrayList<>());

}

// add edges to the directed graph

for (Edge edge: edges) {

adjList.get(edge.source).add(edge.dest);

}

}

Then we use this list to do our searching!

So the solution here seems to be trivial -> we iterate over, �nd the new nodes, mark the

neighbors visited, and then �nally return the ve�ex. DFS/BFS anything works -> let’s try to do it

recursively.

We have the theory of strongly connected components here, which is used to �nd di�erent

sets of nodes in a graph which are connected with each other -> which can be modi�ed to

return a node with no ve�ex.

30DaysCoding.com

Here are the steps

- We sta� exploring from 0 to n, we call DFS() if the node isn’t visited, and then mark it

and it’s neighbors visited during DFS

- We also store the value of the iterating node till the very end -> this is the last node

which was discovered and is our best bet

- We then call DFS again from this node and see if we �nd any unvisited nodes. If we do

�nd any unvisited nodes -> it means that there are more than 2 root ve�ices -> return

-1. If we don’t �nd any unvisited, meaning that all nodes are visited, then we return the

last element that we stored.

Let’s analyse through code. We explore and call dfs on the nodes and keep a track of the last

node:

boolean[] visited = new boolean[N];

int last_node = 0;

for (int node = 0; node < N; node ++)

{

if (!visited[node])

{

DFS(graph, node, visited);

last_node = node;

}

}

Once we’re out of this loop, we have the last_node stored ->> which is our best bet of being

the ve�ex. Now we can reset the visited array and check if the visited array has any more

nodes or not.

- Why are we rese�ing the value of the visited array? Because we want to do a fresh search.

- Why are we checking for visited [i] -> because the ve�ex should be the only one which was

not visited.

- Why are we returning -1 => because we didn’t �nd the ve�ex if there are more than 1 nodes

not explored -> meaning more than 1 ve�ex.

30DaysCoding.com

// reset visited = [false] for every node

DFS(graph, last_node, visited);

for (int i = 0; i < N; i++)

{

if (!visited[i]) {

// return -1 if we find an unvisited node

return -1;

}

}

// return the last node if we've visited all nodes.

return last_node;

Here’s an a�icle, explaining more about this: Find root ve�ex of a graph – Techie Delight

Problem 2: Graph coloring

⭐ This is a very interesting problem covering the core of graph iteration, so let’s take a look

here.

We want to color the nodes in a way that no 2 consecutive nodes have the same color. There

are a lot of implementations a�ached to this concept, some of them are:

- Scheduling: Problems where we have a list of jobs or times or rooms, and we want to

�nd an optimal way to �nd the schedules of di�erent things.

- Other seating related problems can also be solved using this approach - where we

don’t want any 2 people si�ing next to each other.

30DaysCoding.com

A general approach to problems like these:

- Sta� from a node

- Check the colors of the neighbors, store it in a set, and then use that set for the next

color.

// check colors of adjacent vertices of `node` and store them in a set

for (int i: graph.adjList.get(u))

{

if (result.containsKey(i)) {

assigned.add(result.get(i));

}

}

Then we try to �nd the color for the node. This will be a simple search algorithm, where we

iterate over and �nd the color:

// check for the first free color

int node_color = 1;

for (Int color: colors)

{

if (node_color != color) {

break;

}

node_color++;

}

Once we �nd the color -> node_color -> we add it to the node {node: color} and store it in a list.

Other questions and concepts in this range can be solved with a similar pa�ern:

- Explore the nodes

- Find the neighboring colors/conditions

- Add those and store to �nd the next best thing

Similar questions

- [849] Maximize Distance to Closest Person

30DaysCoding.com

- Leetcode : Exam Room

Try to use Interesting random things to �nd the closest or the minimum distance things. Think

of 2 pointers, multiple iterations, traversing from the back, priority queue, etc.

⭐ We don’t have to think of every question in a graph or tree as a graph or tree question. Try

to �nd the conditions, see how you can restrict them and �nd the next optimal thing.

Questions like these help you with problem solving. Once you sta� thinking of di�erent

random ways to solve a problem in your head, Woohoo. You’re a be�er problem solver than

yesterday! It’s about your own journey of learning and growing, keep it up!

Credits

- Graph coloring - Wikipedia

- Scheduling (computing)

Problem 3: Detect cycle in graph

⭐ If you have an undirected graph and want to �nd the cycle, what do you do? I would leave

the interview and go home.

Just kidding, let’s try to solve this.

We want to search through the graph, see if we �nd the visited node again and then return

true. There’s a catch here -> it’s an undirected graph, so we don’t know if the parent has an

outgoing arrow or not -> there’s no way to tell which node is the parent and parent-child nodes

are always connected.

boolean visited[]=new boolean[V];

for(int i=0;i<V;i++){

if(!visited[i]){

if(DFS(adj,i,visited,-1))

return true;

}

}

return false;

So we need an additional condition here: To check for the parent node when writing Dfs code.

So how do we check for the parent?

30DaysCoding.com

We can pass in the parent value every time we’re calling the recursive function. So every time

you explore a new node, you pass in that node as the ‘parent’ variable. The next time that

parent variable gets changed to the new node.

static boolean DFS(adj,int head, boolean visited[], int parent){

visited[head]=true;

// iterate over the adjacency list

for(int node:adj.get(head)){

if(!visited[node]){

// pass head to the DFS function

if(DFS(adj,node,visited, head))

return true;

}

// we check the node and parent relation here

else if(node != parent)

return true;

}

// if we don't find the cycle

return false;

}

For iterative solution, we follow the simple DFS path with stack

- Add the node to the stack

- Add a condition -> In this case: check for the cycle

- Pop the node and explore the neighbors

- Add the valid neighbors to the stack

We can pass in a {root, parent} and then check once we pop it o� the stack.

stack.push({node, parent});

while (stack.isEmpty()):

node, parent = stack.pop();

we found the cycle

if node!=parent and visited[node]:

return true

for neighbor in node.neighbors:

if neighbor:

visited[neig]

30DaysCoding.com

stack.append(neighbor)

some other things

Read more here: Detecting Cycles in a Directed Graph

⭐ There’s a second pa� to this, where we �nd a cycle in a directed graph. Here’s a nice

visualizer to see that in action: Simple Recursive - Cycle Detection

Problem 4: Friend Circles

⭐ We have a 2D matrix and we want to �nd friends from that matrix. All the friends who have

the same number row & column wise.

Think of it as nodes connecting with each other, where we’re trying to �nd the connected ones

to form a friend circle. So we can iterate over the nodes, do a simple DFS, and count the

number of friend circles we have. Super similar to number of islands and other DFS questions -

the only trick is to identify this as a DFS and graph problem.

DFS would look something like this:

private void dfs(int[][] M, int i, boolean[] visited, int n) {

for (int j = 0; j < n; j++) {

if (M[i][j] == 1 && !visited[j]) {

visited[j] = true;

dfs(M, j, visited, n);

}

}

}

We call this DFS function for every unvisited node, mark it visited in the DFS function, and then

increase the circles.

for (int i = 0; i < n; i++) {

if (!visited[i]) {

dfs(M, i, visited, n);

numCircles++;

}

30DaysCoding.com

}

Complete code here: Friend circles

Problem 5: Connected components

323. Number of Connected Components in an Undirected Graph

⭐ Super similar to �ood �ll, number of islands, and other questions where we have to �nd a

connected network of nodes and return something from that at the end.

Let’s follow our DFS pa�ern:

- Add the initial node to stack

- Pop from the stack, mark the node visited

- Explore the valid neighbors through some condition

- Repeat the process

Here’s the catch -> we want to call dfs() for every node in the list that we have, so either we

can make a separate function or just do it inside the loop. Here’s how the dfs would look:

while(!dfs.empty()){

int current = dfs.top(); dfs.pop();

visited[current] = true;

for(int neighbour : adjList[current]){

if(!visited[neighbour]) dfs.push(neighbour);

}

}

We iterate over the list of nodes and call this for every node -> marking all the connected

components visited and increasing the counter once for every new node. Here’s how the

complete code looks like.

for(int i = 0; i < n; i++){

if(!visited[i]){

ans++;

dfs.push(i);

30DaysCoding.com

DFS(node);

}

}

⭐ Understand the underlying principles, visualize it in your head, and explain it to your mind

before moving forward. A lot of times, you won’t have to code the whole thing in an interview,

but explain, explain, explain! They want to know your approach and understanding before

knowing how you write code.

Algorithms

⭐ There are other, advanced graph algorithms which are good to know and o�en overlap with

some sho�est path questions. So here are some links you can refer to, when studying about

these:

● Kruskal's Algorithm: Kruskal's algorithm

● Union Find Algorithm In Graph: Disjoint-set data structure

● Prim's Algorithm: Prim's algorithm

⭐ Missing something? Email us at 30dayscoding@gmail.com and let us know if you need

additional help! We’re happy to help you with more resources.

Read📚

- A Gentle Introduction To Graph Theory | by Vaidehi Joshi | basecs

- Advanced Graph Algorithms: Dijkstra's and Prim's | by Mikyla Zhang | Medium

- 10 Graph Algorithms Visually Explained | by Vijini Mallawaarachchi

Videos🎥

- Intro: Graph Theory Introduction

- Intro: Lecture 6: Graph Theory and Coloring | Video Lectures | Mathematics for

Computer Science | Electrical Engineering and Computer Science

- Intro: Lecture 12: Graphs and Networks | Video Lectures | Computational Science and

Engineering I | Mathematics

30DaysCoding.com

- Dijkstra's Sho�est Path Algorithm | Graph Theory

Questions 🤔❓

- Employee Impo�ance

- Redundant Connection

- 130 Surrounded Regions

- 721. Accounts Merge

- Leetcode-Clone Graph

- Word Search

- Network Delay Time

- Is Graph Bipa�ite?

- 802. Find Eventual Safe States

- 841. Keys and Rooms

- Leetcode : Possible Bipa�ition

- [947] Most Stones Removed with Same Row or Column

- 994. Ro�ing Oranges

- 787. Cheapest Flights Within K Stops

- 1319. Number of Operations to Make Network Connected

⭐ Here are some famous topics and algorithms under graph theory, which are exciting to

know about but aren’t necessarily used directly in coding interviews:

- Prim’s algorithm

- Kosaraju’s algorithm

- Bellman ford

- Floyd Warshall

There are also other algorithms which are discussed in the section below here.

30DaysCoding.com

Topological So�ing

Introduction

⭐ The name suggests so�ing, so it probably should be :P. Here’s the de�nition: “topological

ordering of a directed graph is a linear ordering of its ve�ices such that for every directed

edge uv from ve�ex u to ve�ex v, u comes before v in the ordering”

In simple words, we need to so� then in such a way that that the ‘prerequisite’ comes before all

the others and we have a directed structure from one node to another.

Let’s understand this with CLASSES at your school/college/university. You have to take calculus

before taking advanced mathematics and you have to take basic programming before moving

forward -> that’s topological so�ing. You can make your class schedule using this algorithm.

Here’s a beautiful way to see topological so�ing in action: Branch and Bound - Topological So�

Let’s conve� this to code, step by step.

Firstly, we want to cover all the nodes so we can use a stack or queue. It’s a DAG and we’re

concerned about the depth, so let’s use a stack. Queue is also an option here.

30DaysCoding.com

We have an array given to us, let’s iterate over that -> go as deep as possible and add that to

our set. We want to go to the last node and begin from there. Here’s the algorithm from

Wikipedia.

L ← Empty list that will contain the sorted elements

S ← Set of all nodes with no incoming edge

while S is not empty do

remove a node n from S

add n to L

for each node m with an edge e from n to m do

remove edge e from the graph

if m has no other incoming edges then

insert m into S

if graph has edges then

return error (graph has at least one cycle)

else

return L (a topologically sorted order)

Removing edge means marking it visited and never coming back to it again. So here’s what the

�rst thing looks like.

for(int i=0; i < nodes.length; i++){

if(visited[i] == false){

visited[i] = true;

toposort(i, visited, adj, s);

}

}
// Print the stack here -> it’s sorted!

We have to de�ne toposo�() which does the same thing -> takes the pointer to the very last

node, adds it to the stack, marks them visited along the way, and then eventually �lls up the

array. Here’s the toposo� function:

toposort(int i, boolean visited[], adj[][], Stack<> stack){

for(int x : adj.get(i)){

30DaysCoding.com

if(visited[x] == false){

visited[x] = true;

toposort(x, visited, adj, stack);

}

}

stack.push(i);

}

A�er �lling up the stack, we print out all the items from that in a so�ed form. Here’s a nice

explanation video by WIlliam Fiset on topo so�: Topological So� Algorithm | Graph Theory

Here’s another version of the code for topological so�ing: Python Topological So�ing,

[Topological So� Algorithm]

Now that we know the basics of topological so�ing, let’s understand it more through a

question -> the most popular one: course schedule.

Problem 1: Course Schedule

207. Course Schedule

⭐ Course schedule is an amazing problem and it resonates with every student, although no

one likes to solve it. It’s far from reality, because we all want to so� courses by di�culty :P

(everyone loves easy courses)

Onto the question -> We have the number of courses and an array of prerequisites -> the

prerequisites can be multiple for some classes. Like you might have to take CS101 for 120 as

well as 130. So we need to take that into consideration as well.

Firstly, let’s transform the prerequisites so that we can use them. We transform the 2D matrix

into a graph-like thing where we have a key -> value thing for prerequisite -> course.

ArrayList[] graph = new ArrayList[numCourses];

for(int i=0;i<numCourses;i++)

30DaysCoding.com

graph[i] = new ArrayList();

boolean[] visited = new boolean[numCourses];

for(int i=0; i<prerequisites.length;i++){

graph[prerequisites[i][1]].add(prerequisites[i][0]);

}

We want to call DFS on all the nodes as we go and mark them visited once we cover them ->

basics of topological so�ing.

for(int i=0; i<numCourses; i++){

if(!dfs(graph,visited,i))

return false;

}

return true;

Onto writing the dfs() function where we visit every node from that one node, mark the

neighbors visited and keep a track of the eventual course structure -> whether we can take the

courses or not.

The return type is a li�le di�erent as we’re returning true or false based on that pa�icular node.

So we visited the courses, store them in a visited array and return true if we’re able to take the

courses from there. We do this for all other nodes until we �nd a negative result. If we don’t,

we return true at the end.

private boolean dfs(ArrayList[] graph, boolean[] visited, int course){

if we’ve already taken the course, return false

if(visited[course])

return false;

else

visited[course] = true;;

for(int i=0; i<graph[course].size();i++){

call DFS for the course now -> .get(i)

if(!dfs(graph,visited,(int)graph[course].get(i)))

return false;

}

mark it visited or taken

30DaysCoding.com

visited[course] = false;

return true;

}

Resources

- Topological So� Graph | Leetcode 207 | Course Schedule

- [LeetCode]Course Schedule. May 30-Day Challenge | by Yinfang

- Course Schedule | Deadlock detection | Graph coloring | Leetcode #207

- Leetcode - Course Schedule (Python)

Read📚

- De�nition: Wikipedia

- Visualizer: Branch and Bound - Topological So�

Videos🎥

- Topological So� Algorithm | Graph Theory

- Topological So� | Kahn's Algorithm | Graph Theory

Questions❓

- Topological So�

- Leetcode : Find the Town Judge

- LeetCode 210. Course Schedule II

30DaysCoding.com

Greedy Algorithms

Introduction

⭐ Algorithms where we make choices at every step because of a reason (optimal choice) are

called greedy algorithms. Like returning the max everytime in an array, or maybe returning the

cheapest food near you from a list of restaurants with multiple menu items. Greedy answers

can de�nitely work, but it might not be the most optimal thing to do w� time and space

complexity.

For instance, you have a tree and you want to �nd the maximum path sum of that tree. The

correct solution to that would be to explore all di�erent cases, add memoization to the logic,

and �nally return the max path sum from that. However, if you try to use a greedy approach

right from the top, you would end up making the wrong mistake of choosing the maximum

element at every level - which would be wrong. So we have to be sma� about using it at the

right time. Here are some sub topics which will help you understand things in a be�er way.

A lot of questions can be solved by so�ing the input and then adding some logic to that. Let’s

discuss a question: meeting rooms. We have the sta�ing and ending times for a room

throughout the day. And we want to check how many people can be there at the maximum

time or something -> so we so� the times, arrange the people in terms of the time and then

�nd the maximum while iterating through the instances. Let’s discuss some problems on

similar concepts.

Problem 1: Merge intervals

56 Merge Intervals

⭐ Another problem which can be solved fairly quickly a�er so�ing is this one. Instead of

comparing all the possible cases, if we just so� the inputs and then compare the last and �rst

elements and then combine them -> it’ll be much easier.

Solution: A simple Java solution

30DaysCoding.com

Problem 2: Meeting rooms

⭐ We have a 2D array of the incoming and outgoing times for a person inside a room. We

want to return the number of meeting rooms we would need to accommodate them.

So for eg: [[2,7], [5,7], [3,4]]. We need 2 rooms here, one for the 2,7 one and the other one for

the next 2 people who come and go.

Brute force looks annoying here, we iterate over, �nd all possible cases, memoize something,

and then �nally return the optimal answer. We want the minimum rooms, so we condition

something on that, and return that.

What if we change the game a li�le here, what if we track every time someone comes in and

goes (a�er so�ing). So if we so� this array -> we would see someone comes at 2,3,5 and

someone leaves at 4,7,7.

What if -> we turn the people anonymous and every time someone comes in, we +1 the

counter, and everytime someone leaves the room, we -1 the counter? Try it. While doing this,

we store the max value of the counter and eventually return that max value. That’s the

maximum number of rooms we need.

def meetingRooms(start, ends):

rearrange_rooms = [(s,1) for s in start] + [(s,-1) for s in ends]

rearrange_rooms.sort()

rooms=0

max_rooms=0

iterate and add value to room

for pos, value in rearrange_rooms:

rooms += value

store the max rooms

max_rooms = max(rooms, max_rooms)

return max_rooms

30DaysCoding.com

You can also manually +1 and -1 for the incoming and outgoing people, here we just transform

that into a big array with these elements: (incoming_time, +1) or (outgoing_time, -1)

⭐ See how so�ing + greedy helps solve some amazing problems with ease. Always think of

so�ing arrays if they can simplify the problems. The time complexity is NlogN for so�ing which

o�en helps in optimization.

Problem 3: Largest number

Leetcode-Largest Number

We have an array of nums, we want to make the largest number from those elements.

public String largestNumber(int[] nums) {

// Get input integers as strings.

String[] asStrs = new String[nums.length];

for (int i = 0; i < nums.length; i++) {

asStrs[i] = String.valueOf(nums[i]);

}

// Sort strings according to a custom comparator.

Arrays.sort(asStrs, new LargerNumberComparator());

// If, after being sorted, the largest number is `0`, the entire number

// is zero.

if (asStrs[0].equals("0")) {

return "0";

}

// Build the largest number from a sorted array.

String largestNumberStr = new String();

for (String numAsStr : asStrs) {

largestNumberStr += numAsStr;

}

return largestNumberStr;

}

30DaysCoding.com

Priority Queue

⭐ Priority Queue is a big pa� of greedy algorithms -> tons of questions revolve around

priority queues and it’s impo�ant to understand how we can use them. They suppo� inse�,

delete, getMax(), and other operations in logN time -> so instead of doing extra work with

ge�ing the max or min, we can use heaps and make it faster.

Here’s the formal de�nition:

It’s a heap based structure where we can so� and store elements in a min/max fashion so that

every time we need a new element -> we just pop it o� from the top instead of so�ing and

computing the whole thing again.

What is a heap? It’s a tree like structure with these conditions:

- Complete binary tree

- Min heap: Every node should be smaller than the ones below it. So the element at the

top (root node) will be the min one.

- Max heap: Every node should be bigger than the ones below it. So the element at the

top (root node) will be the max one.

⭐ Priority queues are also heavily used in graph theory -> where we want optimal paths or

cheaper things. For eg: Cheap tickets from point A to B. We can store the edges in a priority

queue as we iterate and then return the top path (with some other conditions).

Djikstra’s algorithm is a common one, where priority queue is used as the main data structure.

It’s used to �nd sho�est paths between nodes in a graph. Imagine an airplane �ight network

where we want the cheapest �ight path. There are multiple sho� path algorithms which come

under the banner of graph theory, where most of them have to do something with priority

30DaysCoding.com

queues. So it boils down to the fundamental knowledge of BFS/DFS and how to add some

tweaks for sho� paths, priority queue and other things.

Problem 4: Top k elements

h�ps://leetcode.com/problems/top-k-frequent-elements/

⭐ We have an array full of repeating elements and we want to return the maximum frequency

ones - in a row. So if we have [1,1,1,3,3,5] and k=3 -> then we return 1,3,5.

One way to do this is to count the numbers using a hashmap. Use the map something like this:

map[element] = count. So� the map using the keys, iterate over the array, and then iterate over

it again -> and then return the top K ones.

Python does it sho� hand format but it basically means this -> so�ing(map[values]) and then

we keep a counter thing for it.

counter = Counter(nums) # count the elements

sortedcounter = sorted(counter, key=lambda key: (counter[key], key))

sort the array

count = 1

res = []

for i in range(len(sortedcounter)-1, -1,-1): # iterate from the back

res.append(sortedcounter[i])

return when the counter reaches k

if count == k:

return res

count += 1

return res if less than k

return res

Bucket so�: “Bucket so�, or bin so�, is a so�ing algorithm that works by distributing the

elements of an array into a number of buckets.”

We just iterate over the frequency map and add our items to the buckets for every frequency.

Notice here, how we have buckets for frequency and every bucket is an array list where we

add the key. So it’s the other way round. Eventually, the bucket would look like this:

3 -> 1...more elements with frequency 1

2 -> 2… more elements with frequency 2

30DaysCoding.com

for (int key : frequencyMap.keySet()) {

int frequency = frequencyMap.get(key);

if (bucket[frequency] == null) {

bucket[frequency] = new ArrayList<>();

}

bucket[frequency].add(key);

}

Once you’ve added the items, we iterate from the back and return the k elements.

for (int pos = bucket.length - 1; pos >= 0 && res.size() < k; pos--) {

if (bucket[pos] != null) {

res.addAll(bucket[pos]);

}

}

We can also use a priority queue or a min heap and add/store elements in there, which does

the so�ing for us. Remember, whenever there’s something to do with min/max or return a list

of elements in some so� of order -> priority queue can be very useful. Here’s how the code

would look like for a heap

Make sure to understand the solution, make a small document for yourself, and your notes

there. If you have any additional questions, email us at 30dayscoding@gmail.com.

public List<Integer> topKFrequent(int[] nums, int k) {

Map<Integer, Integer> map = new HashMap<>();

for(int n: nums){

map.put(n, map.getOrDefault(n,0)+1);

}

PriorityQueue<Map.Entry<Integer, Integer>> minHeap =

new PriorityQueue<>((a, b) -> Integer.compare(a.getValue(),

b.getValue()));

for(Map.Entry<Integer,Integer> entry: map.entrySet()){

minHeap.add(entry);

if (minHeap.size() > k) minHeap.poll();

30DaysCoding.com

}

List<Integer> res = new ArrayList<>();

while(res.size()<k){

Map.Entry<Integer, Integer> entry = minHeap.poll();

res.add(entry.getKey());

}

return res;

}

Problem 5: Coin calculator

Pa� I

⭐ Imagine you have to pay some amount for your food, let’s say $75 and you have a set of

denominations with you -> {1,2,10,25}. What’s the minimum number of coins you would use to

ful�ll that $75 order?

Brute force would probably lead us to trying every possible way and then returning the

minimum number of coins. We could memorize repetitive things, and hence use dynamic

programming to solve the question. Can we do something be�er?

We can use a greedy approach here, to simply use the maximum denomination �rst, so

sta�ing o� with $25 notes and using those until we can’t and then using the others.

Pa� II

Here’s the catch, for example you have {$13, $25} bills and the total bill is $26. What do you do?

If you use a greedy approach, you would end up using the $25 and then leave the $1 behind.

You go�a pay that, or wash the dishes. Here’s where we would need to explore other options

and the backtracking hits us. Make sure you see both the pa�s here, and not just one.

Read

- Non Overlapping Intervals. This week I encountered many interval… | by Osgood

Gunawan | The Sta�up

- When to use Greedy Algorithms in Problem Solving

30DaysCoding.com

Videos

- Interval Scheduling Maximization (Proof w/ Exchange Argument)

- 3. Greedy Method - Introduction

Questions

- Leetcode-Largest Number

- Graph Coloring Problem – Techie Delight

- 435 Non-overlapping Intervals

- 787. Cheapest Flights Within K Stops

- Greedy

Tries

Introduction

⭐ Tries are also a type of pre�x trees which are tree-like structures to store strings.

Let's sta� with a question: You have 2 strings and we want to �nd the common le�ers in it.

The �rst brute force way is to iterate over the �rst string, add the le�ers to a set -> then iterate

over the next string and see all the elements that are in the set. You could also do things like

string2.contains(char) -> but it’s the same thing w� time complexity.

We can inse� and �nd strings in O(L) time, where L is the length of the string. Another use

case can be to print the characters in order.

30DaysCoding.com

Problem 1: Implement Trie

Leetcode 208. Implement Trie (Pre�x Tree)

⭐ We’re going to implement the trie here and understand how it works. A lot of times -> you

would have to implement this on the side and then use it in a question, so we’re going to

discuss a question as well. At the same time, the question could also be “search for a le�er” ->

where we can just use the search function.

First, we want to decide how the Node class looks like. Every node needs to hold a map of the

children and a boolean which tells if it is the last node (leaf node / last character):

class TrieNode:

def __init__(self):

self.children = {}

self.isLast = False

We need the Trie class now. The major functions are inse�, search, sta�sWith -> where we can

also add more -> delete, �ndChar, etc. Let’s begin the inse� function.

Here’s a great a�icle before moving forward: Trying to Understand Tries. In every installment of

this series… | by Vaidehi Joshi | basecs

30DaysCoding.com

Inse�

⭐ We want to inse� a character at the very end of the trie. The �rst pa� of that is iterating

down and �nding the last character (through the isLast �eld of TrieNode) and then add the

character to the map.

The le�er which we’ll add will be a TrieNode() and not just a character. Every node is a TrieNode

-> which has those 2 things.

Here’s how we do it

- Iterate over the word - every le�er

- Iterating forward -> node = node.children[le�er]

- We add the le�er there -> node.children[le�er] = TrieNode()

def insert(self, word):

node = self.root

for letter in word:

if letter not in node.children:

node.children[letter] = TrieNode()

node = node.children[letter]

node.isLast = True

Searching

⭐ We want to search for a character or stream of characters in a string.

Here are the steps:

- Iterate over the le�ers
- If the le�er is not in node.children -> return false. Remember, node.children is a

dictionary of the le�er mappings for the children, -> so it should be there.
- Iterating forward -> node = node.children[le�er]

- If we reach the end without returning false, we return if it’s the last element or not ->

using the isLast class �eld.

def search(self, word):

node = self.root

30DaysCoding.com

for letter in word:

if letter not in node.children:

return False

node = node.children[letter]

return node.isLast

Sta�s With

⭐ We want to return true if the string (pre�x) is at the sta� of a word. We can simply use the
class �eld to our advantage and �nd the right answer here.
Here are the steps

- Iterate over the le�ers
- If the le�er is not in node.children -> return false. Remember, node.children is a

dictionary of the le�er mappings for the children, -> so it should be there.
- Iterating forward -> node = node.children[le�er]

def startsWith(self, prefix):

node = self.root

for letter in prefix:

if letter not in node.children:

return False

node = node.children[letter]

return True

Resources📚

- Trie Data Structure - Beau teaches JavaScript

- Trie Data Structure Implementation (LeetCode)

Questions❓

- Leetcode 208. Implement Trie (Pre�x Tree)

- Leetcode 139. Word Break

- Leetcode Word Break II

- Leetcode 212. Word Search II

30DaysCoding.com

- Leetcode 1032 Stream of Characters

- Leetcode 421 Maximum Xor of Two Numbers in an Array

Additional Topics

⭐ These are some random mixed questions, which will teach you something new to learn. We

should never solve a question expecting it to come in our interview (even something similar),

but to learn something new from it!

Remember, we’re not trying to solve hundreds or thousands of questions, but to

- Understand the concepts

- Build problem solving skills

- Enjoy our time with questions

- Become a be�er developer

Kadane’s algorithm

Wikipedia: Maximum subarray problem

⭐ It’s used to solve the maximum subarray problem and the concept is to keep a track of the

sum as you go -> and change it to 0 when it’s negative. (so you’re positive at the very least). An

edge case is all negative numbers -> where you return the min of those.

Djikstra’s algorithm

⭐ Djikstra’s algorithm is a sho�est path algorithm, where priority queue is used as the main

data structure. Imagine an airplane �ight network where we want the cheapest �ight path from

30DaysCoding.com

point A to B. There’s also the sho�est-path-tree which basically returns a tree with lowest cost

from one node to another. So instead of just a sho� path from A to B, we do it for all the nodes

in the graph.

Here’s a nice video about this algorithm: Dijkstra's Algorithm - Computerphile

Let’s understand the algorithm:

The basic understanding is that we want to visit every node, mark them visited, calculate the

cost until then, and �nally return the sho�est path. We can simply do a BFS (sho�est path!) and

use a Queue for that.

Here’s the catch -> if we use a simple queue, then it would be hard to get the minimum

element when we pop it o�. So instead, we can use a priority queue -> where every time we

pop something o�, we get the minimum element.

Following the BFS principles, we add the node to the queue, pop it o�, explore it’s neighbors +

do some calculations for the route + mark them visited, and then repeat. Here’s a nice

visualization of the dijkstra's algorithm: Greedy - Dijkstra's Sho�est Path

function Dijkstra(Graph, source):

dist[source] ← 0 // Initialization

create vertex priority queue Q

for each vertex v in Graph:

if v ≠ source

dist[v] ← INFINITY // Unknown distance from source to v

prev[v] ← UNDEFINED // Predecessor of v

Q.add_with_priority(v, dist[v])

30DaysCoding.com

while Q is not empty: // The main loop

u ← Q.extract_min() // Remove and return best

vertex

for each neighbor v of u: // only v that are still in Q

alt ← dist[u] + length(u, v)

if alt < dist[v]

dist[v] ← alt

prev[v] ← u

Q.decrease_priority(v, alt)

return dist, prev

Credits: Wik

AVL Trees

In a normal BST, the elements in the le� tree are smaller than the root and the right ones are

bigger than the root. It’s very useful for so�ing and we can �nd the element in O(logN) time.

There’s a catch -> for the given nodes in an array -> there’s a format that we have to follow

which generates multiple binary trees with di�erent structures.

[1,2,3] can generate a binary search tree with the root 3, le� child 2, with le� child 1 -> this is not

what we wanted and hence we need something be�er.

AVL trees have a condition, the balance factor has to be in the range {-1,0,1}. So it’s a self

balancing binary search tree.

Resources:

- 10.1 AVL Tree - Inse�ion and Rotations

- AVL tree - Wikipedia

- AVL Tree Visualization

30DaysCoding.com

So�ing

So�ing is super impo�ant as a concept but not super impo�ant in terms of knowing

everything about them. For questions, you can use .so�() to so� whatever you’re using, and

rarely you’ll be asked to actually implement the underlying algorithms. Read more here: So�ing

algorithm

Here’s a great visualizer for all so�ing algorithms: So�ing Algorithms Animations

More so�ing visualizer algorithms: Divide and Conquer - Bucket

More

If you think we should add a section or anything in general, please write to us at

30dayscoding@gmail.com

Additional awesomeness

Questions

- 150 Questions: Data structures

- Striver SDE Sheet

Blogs

- How to make a computer science resume

- How to apply for Internships and Jobs

- How to take a technical phone interview

- How to �nd coding projects + people

- How to learn a language/framework from scratch

- How to revise for Coding Interviews in 15/30/45 days

- Everything about a technical internship

- How to choose the right university (USA)

30DaysCoding.com

- How to Get an Internship in MNC | Board In�nity

Youtubers

DSA
- WilliamFiset (English)

- IDeserve (English)

- Kevin Naughton Jr. (English)

- Back To Back SWE (English)

- Tech Dose (English)

- Codebix (Hindi)

Competitive coding

- SecondThread

- Errichto's Youtube channel

- William Lin

Websites

- 30DaysCoding

- Geeks for geeks

- Leetcode Pa�erns – Medium

- Interview Question

